
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4683

ARTIFICIAL NEURAL NETWORK

ARCHITECTURE FOR SOLVING THE

DOUBLE DUMMY BRIDGE PROBLEM IN

CONTRACT BRIDGE

M Dharmalingam
1
 and R Amalraj

2

Ph.D Research Scholar, Department of Computer Science, Bharathiar University, Coimabatore, India
1

Associate Professor Department of Computer Science, Bharathiar University, Coimabatore, India
2

Abstract: Card games are interesting for many reasons besides their connection with gambling. Bridge is being a game

of imperfect information, it is a well defined, decision making game. The estimation of the number of tricks to be taken

by one pair of bridge players is called Double Dummy Bridge Problem (DDBP). Artificial Neural Networks are Non –

Linear mapping structures based on the function of the human brain. Feed Forward Neural Network is used to solve the

DDBP in contract bridge. The learning methodology, supervised learning was used in Back – Propagation Network

(BPN) for training and testing the bridge sample deal. In our study we compared back – Propagation algorithm and

obtained that Resilient Back – Propagation algorithms by using Hyperbolic Tangent function and Resilient Back –

Propagation algorithm produced better result than the other. Among various neural network architectures, in this study

we used four network architectures viz., 26x4, 52, 104 and 52x4 for solving DDBP in contract bridge.

Key words: BPN, Contract Bridge, Back – Propagation Algorithm, Resilient Back – Propagation Algorithm,

Hyperbolic Tangent function.

I. INTRODUCTION

In the game playing domain the most popular

Computational Intelligence (CI) disciplines are Neural

Networks (NN), Evolutionary Methods (EM), and

Supervised Learning (SL) [1]. Neural Networks are

computational structure capable of processing information

in order to finish a given task. A Neural Network is

composed of many simple neurons each of which receives

input from selected other neurons, and performs basic

operations on this input information and send its response

out to other neurons in the network. Stimulation for the

above way of processing information is biological anxious

system and in particular biological brain. NN models can

therefore be regarded as very rough simplification and

abstraction of biological networks. NN have been

successfully applied to various recognition, classification

problems [2] and games [3] [36][37][38][39].

The Card game is skillful and knowledgeable which it

increases the creativity of the human mind and there are

extremely powerful Artificial Neural Network (ANN)

approaches in which playing agents are equipped with

carefully designed evaluation functions. Artificial Neural

Networks (ANNs) are non – linear mapping structures

based on the function of the human brain. Neural networks

are type of artificial intelligence that attempts to imitate

the way a human brain works rather than using a digital

model [31]. The Feed-Forward Neural Networks (FFNN)

are one of the most common types of neural network in

use and these are often trained by the help of supervised

learning supported by Back-propagation algorithm [5].

Many of the feed-forward neural networks were trained to

solve the Double Dummy

Bridge Problems (DDBP) in

bridge game [9][21][22][40]. Among the various neural

networks, in this paper we mainly focus Back-propagation

Network (BPN) for training and testing the data. Back -

Propagation Algorithm and Resilient - Back Propagation

Algorithms were used in BPN network to train the data for

solving Double Dummy

Bridge Problems in Contract

Bridge.

II. PROBLEM DESCRIPTION

In bridge games, basic representation include value of

each card (Ace (A), King (K), Queen (Q), Jack (J),

10, 9, 8, 7, 6, 5, 4, 3, 2) and suit as well as the assignment

of cards into particular hands and into public or hidden

subsets, depending on the game rules. In the course

learning, besides acquiring this basic information several

other more sophisticated game features need to be

developed by the learning system [8][9].

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4684

A. The Game of Contract Bridge

Contract bridge, usually known simply as bridge, is a

trick - taking card game. There are four players in two

fixed partnerships (Pairs). Partners sit facing each other. It

is traditional to refer to the players according to their

position at the table as North (N), East (E), South (S)

and West (W), so N and S are partners playing against E

and W. Example shown in Fig 1.

Fig 1 Game disposition

A standard 52 card pack is used. The cards in each

suit rank from highest to lowest: Ace (A), King (K),

Queen (Q), Jack (J), 10, 9, 8, 7, 6, 5, 4, 3, 2. The dealer

deals out all the cards one at a time so that each player

receives 13 of them. Next level bid to decide who will

be the declarer takes place. A bid specifies a number of

tricks and a trump suit (or that there will be no trumps).

The side which bids highest will try to win at least that

number of tricks bid, with the specified suit as trumps.

There are 5 possible trump suits: spades (♠), hearts (♥),

diamonds (♦), clubs (♣) and “no-trump” which is the

term for contracts played without a trump. After three

consecutive passes, the last bid becomes the contract.

The team who made the final bid will now try to make

the contract. The first player of this team who mentioned

the denomination (suit or no-trump) of the contract

becomes the declarer. The declarer‟s partner is known as

the dummy shown in Fig 2.

Fig 2 Bridge Table

The player to the left of the declarer leads to the first

trick. Immediately after this opening lead, the dummy‟s

cards are exposed. The play proceeds clockwise. Each

player must, if possible, play a card of the suit led. A

player with no card of the suit led may play any card. A

trick consists of four cards, and is won by the highest

trump in it, or if no trumps were played by the highest

card of the suit led. The winner of a trick leads to the

next. The aim of the declarer is to take at least the

number of tricks announced during the bidding phase.

The players of the opposite pair try to prevent him from

doing it [6][7]. In bridge, special focus in game

representation is on the fact that players cooperate in pairs,

thus sharing potentials of their hands.

B. Double Dummy Bridge Problem

To estimate the number of tricks to be taken by one pair of

bridge players is called Double Dummy Bridge Problem

(DDBP). A bridge problem presented for entertainment, in

which the solver is presented with all four hands and is

asked to determine the course of play that will achieve or

defeat a particular contract. The partners of the declarer,

whose cards are placed face up on the table and played by

declarer. Dummy has few rights and may not participate in

choices concerning the play of the hand [9].Estimating

hands strength is a decisive aspect of the bidding phase of

the game of bridge, since the contract bridge is a game

with incomplete information and during the bidding phase.

This incompleteness of information force considering

many variants of a deal cards distributions. The player

should take into account all these variants and quickly

estimate the expected number of tricks to be taken in each

case [10] [21][22]

C. The Bidding phase

The bidding phase is a conversation between two

cooperating team members against an opposing

partnership. It aims to decide who will be the declarer.

Each partnership uses an established bidding system to

exchange information and interpret the partner's bidding

sequence. Each player has knowledge of his own hand and

any previous bids only. A very interesting aspect of the

bidding phase is cooperation of players in a North with

South and West with East. In each, player is modeled as an

independent, active agent that takes part in the

communication process. The agent-based algorithm to use

of achieve in appropriate learning, a bidding ability close

to that of a human expert [11] [12] [13] [14] [15].

D. The Play Phase

In the game, the play phase seems to be much less

interesting than the bidding phase. Artificial Intelligence

(AI) approaches tried to imitate human strategy of the play

by using some “tactics”. The new system was able to find

a strategy of play and additionally a “human” explanation

of it [16] [17].The player to the left of the declarer leads to

the first trick and may play any card. Immediately after

this opening lead, the dummy's cards are exposed. Play

proceeds clockwise. Each of the other three players in turn

must, if possible, play a card of the same suit that the

leader played. A player with no card of the suit led may

play any card. A trick consists of four cards, one from

each player, and is won by the highest trump in it, or if no

trumps were played by the highest card of the suit led. The

winner of a trick leads to the next and may lead any card.

Dummy takes no active part in the play of the hand and is

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4685

not permitted to offer any advice or comment on the play.

Whenever it is dummy's turn to play, the declarer must say

which of dummy's cards is to be played, and dummy plays

the card as instructed. Finally, the scoring depends on the

number of tricks taken by the declarer team and the

contract [18].

III. THE DATA REPRESENTATION OF

GIB LIBARARY

 The data used in this game of DDBP was taken

from the Ginsberg‟s Intelligent Bridge (GIB) Library. The

data created by Ginsberg‟s Intelligent Bridge player

[19][35]. In our research for implementing GIB library

data we used MATLAB 2008a.The GIB library includes

7,17,102 deals and for each of them provides the number

of tricks to be taken by N S pair for each combination of

the trump suit and the hand which makes the opening lead.

Together there are 20 numbers of each deal i.e. 5 trump

suits by 4 sides. Here 5 trump suits are No-trumps, spades,

Hearts, Diamonds and Clubs. No-trump which is the term

for contracts played without trump. Four sides are West,

North, East and South. So North and South are partners

playing against East and West [20].

IV. SOFT COMPUTING

Nowadays the on-going development of computer

technology, soft computing will considerably enhance

traditional computation methods. The machine-intelligent

behavior is determined by the flexibility of the

architecture, the ability to recognize machine

incorporations of human expertise, laws of inference

procedure and the high speed of learning. All these titles

are the main constituents of the research area named Soft

Computing and it is a practical alternative for solving

mathematically complex problems [4]. Soft computing

involves partnership of several fields, the most important

being Artificial Neural Networks (ANN), Fuzzy Logic

(FL), Genetic Algorithm (GA) and Evolutionary

Computations (EC) [5]. Among the above fields, Artificial

Neural Networks used to solve the Double Dummy Bridge

Problem in Contract Bridge.

V. ARTIFICIAL NEURAL NETWORKS

(ANN)

Artificial Neural Network consists of several processing

units which are interconnected according to some topology

to accomplish a pattern classification task. An Artificial

Neural Network is configured for a specific application,

such as pattern recognition or data classification through

learning process. ANNs are Non-linear information

processing devices, which are built from interconnected

elementary processing devices called neurons

[23][24][25].

In Artificial Neural Networks following the supervised

learning, each input vector requires a corresponding target

vector, which represents the desired output. The input

vector along with the target vector is called training pair.

In supervised learning, a supervisor is required for error

minimization. Hence the network trained by this method is

said to be using supervised learning methodology. In

supervised learning, it is assumed that the correct target

output values are known for each input pattern

[26][27][28][29][30][31][32].

A. Activation Functions

 The activation function is used to determine the

output response of a neuron. The sum of the weighted

input signal is applied with an activation to obtain the

response. For neurons in same layer, same activation

functions are used. There may be linear as well as Non -

Linear activation functions. The Non–Linear activation

functions are used in a Multilayer Neural Network. There

are several activation functions namely as follows Identity

function, Binary step function, bipolar step function,

Sigmoidal functions and Ramp functions.

Among the above activation functions, the Sigmoidal

functions are widely used in Back-propagation networks.

Because of the relationship between the value of the

functions at a point and the value of derivative at that point

which reduce the computational burden during training.

There are two types of sigmoidal functions viz., binary

sigmoidal function and bipopular sigmoidal functions [27].

In this paper we have focused only Binary Sigmoidal

function. If the network uses a binary it is better to convert

it to bipolar form and use the bipolar sigmoid function

activation function or hyperbolic tangent function shown

in the Fig 4.

Fig 4.Logistic function and Hyperbolic Tangent function

ii. B. Supervised Learning Methodology

Learning or training is a process by means of which a

neural network adopts itself to stimulus by making proper

parameter adjustments, resulting in the production of

desired response. The Learning in an Artificial Neural

Networks can be generally classified into three categories

viz., Supervised Learning, Unsupervised Learning and

Reinforcement Learning. Among these three categories we

mainly focused on Supervised Learning in this paper.

In Artificial Neural Networks following the supervised

learning, each input vector requires a corresponding target

vector, which represents the desired output. The input

vector along with the target vector is called training pair.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4686

In supervised learning, a supervisor is required for error

minimization. Hence the network trained by this method is

said to be using supervised learning methodology. In

supervised learning, it is assumed that the correct target

output values are known for each input pattern

[5][26][27][28].

VI. Architecture of Back-propagation Network

(BPN)

A Back-propagation network is a multilayer, Feed-

Forward Neural Network (FFNN) with an input layer, a

hidden layer and an output layer which is shown in the Fig

5. The neuron in the hidden and the output layers has

biases which are connections from units whose output is

always is 0 to 1.

Fig 5 Architecture of BPN

BPN is a multi – layer forward network using extended

gradient-descent based delta-learning rule, commonly

known as Back-propagation rule. Back-propagation

provides a computationally efficient method for changing

the weights in a feed-forward network, with differentiable

activation function units to learn a training set of input

output patterns. The Back-propagation network

implements the generalized delta rule. A gradient –

descent method, it minimize the total squared error of the

output computed by the network. The network is trained

by supervised learning method [5][24][26].

i. A. BPN training algorithm

 The training algorithm of Back-propagation

invokes four stages viz., Initialization of weights, Feed-

forward, Back-propagation of errors and Updating of the

weights and bias.

The detailed algorithm is shown in Fig 6.

function BACK-PROP-LEARNING(example, network)

returns a neural network

 inputs: example, a set of examples, each with input vector

x and output vector y

 network, a multilayer network with L layers, weights

Wj,i, activation function g

 repeat

 for each e in examples do

 for each node j in the input layer do 𝒂𝒋 ← 𝒙𝒋 [𝑒]

for ℓ = 2 to M do

 𝑖𝑛𝑗 ← 𝑊𝑗 ,𝑖
𝑗

𝑎𝑗

 𝑎𝑖 ← 𝑔 𝑖𝑛𝑗

 for each node i in the output layer do

∆𝑖← 𝑔ʹ (𝑖𝑛𝑖) × (𝑦𝑖 [𝑒] – 𝑎𝑖)

 for ℓ = M – 1 to l do

 for each node j in layer ℓ do

∆𝑗 ← 𝑔ʹ 𝑖𝑛𝑗 𝑊𝑗 ,𝑖
𝑖

 ∆𝑖

 for each node i in layer ℓ + 1 do

 𝑊𝑗 ,𝑖 ← 𝑊𝑗 ,𝑖 + 𝛼 × 𝑎𝑗 × ∆𝑖

 until some stopping criterion is satisfied

 return NEURAL-NET-HYPOTHESIS(network)

Fig 6 The back-propagation algorithm for learning in BPN

networks

For the mathematically inclined, the back-propagation

equations are derived from first principals. The squared

error on a single example is defined as,
𝐸

=
1

2
 (

𝑖

𝑦𝑖

− 𝑎𝑖)
2 (1)

where the sum is over the nodes in the output layer. To

obtain the gradient with respect to a specific weight Wj,i in

the output layer, one should need only expand out the

activation 𝛼i as all other terms in the summation are

unaffected by Wj,i :

𝜕𝐸

𝜕𝑤𝑖,𝑗
= − 𝑦𝑖 − 𝑎𝑖

𝜕𝑎𝑖
𝜕𝑤𝑖,𝑗

= − 𝑦𝑖 − 𝑎𝑖
𝜕𝑔 𝑖𝑛𝑖

𝜕𝑤𝑖,𝑗

= − 𝑦𝑖 − 𝑎𝑖 𝑔
′ 𝑖𝑛𝑖

𝜕𝑖𝑛𝑖
𝜕𝑤𝑖,𝑗
= − 𝑦𝑖

− 𝑎𝑖 𝑔
′ 𝑖𝑛𝑖

𝜕

𝜕𝑤𝑖,𝑗
 𝑤𝑖,𝑗

𝑗

𝑎𝑗

= − 𝑦𝑖 − 𝑎𝑖 𝑔
′ 𝑖𝑛𝑖 𝑎𝑗

= −𝑎𝑗∆𝑖 , (2)

With ∆i defined as before. To obtain the gradient with

respect to the Wk,j weights connecting the input layer to the

hidden layer, to keep the entire summation over i because

each output value ai may be affected by changes in Wk,j.

Activations of aj also be expanded and the derivative

operator propagates back through the network

𝜕𝐸

𝜕𝑤𝑖,𝑗
= − (

𝑖

𝑦𝑖 − 𝑎𝑖)
𝜕𝑎𝑖
𝜕𝑤𝑖,𝑗

= − (

𝑖

𝑦𝑖 − 𝑎𝑖)
𝜕𝑔 𝑖𝑛𝑖

𝜕𝑤𝑘,𝑗

= − (

𝑖

𝑦𝑖 − 𝑎𝑖)𝑔
′ 𝑖𝑛𝑖

𝜕𝑖𝑛𝑖
𝜕𝑤𝑘,𝑗

= − ∆𝑖
𝑖

𝜕

𝜕𝑤𝑖,𝑗
 𝑤𝑖,𝑗

𝑗

𝑎𝑗

= − ∆𝑖
𝑖

𝑤𝑘,𝑗
𝜕𝑎𝑖
𝜕𝑤𝑘,𝑗

 = − ∆𝑖
𝑖

𝑤𝑗 ,𝑖

𝜕𝑔 𝑖𝑛𝑗

𝜕𝑤𝑘,𝑗

= − ∆𝑖
𝑖

𝑤𝑘,𝑗𝑔
′ 𝑖𝑛𝑗

𝜕𝑖𝑛𝑖
𝜕𝑤𝑘,𝑗

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4687

= − ∆𝑖
𝑖

𝑤𝑘,𝑗𝑔
′ 𝑖𝑛𝑗

𝜕

𝜕𝑤𝑘,𝑗

 𝑤𝑘,𝑗

𝑘

𝑎𝑘

 = − ∆𝑖
𝑖

𝑤𝑘,𝑗𝑔
′ 𝑖𝑛𝑗 𝑎𝑘 = −𝑎𝑘∆𝑗 , (3)

where ∆j is defined as before. The update rules were

obtained earlier from intuitive considerations. It is also

clear that the process can be continued for networks with

more than one hidden layer, which justifies the above

general algorithm [28-29][32-33].

B. The Resilient Back-Propagation (RBP)

Algorithm

The algorithm RBP is a local adaptive learning scheme,

performing supervised batch learning in feed – forward

neural networks. The basic principle of RBP is to

eliminate the harmful influence of the size of the partial

derivative on the weight step. As a consequence, only the

sign of the derivative is considered to indicate the

direction of the weight update.

The algorithm acts on each weight separately. For each

weight, if there was a sign change of the partial derivative

of the total error function compared to the last iteration,

the update value for that weight is multiplied by a factor

η−, where 0 <η− < 1. If the last iteration produces the

same sign, the update value is multiplied by a factor of η

+, where η+ > 1. The update values are calculated for each

weight in the above manner, and finally each weight is

changed by its own update value, in the opposite direction

of that weight's partial derivative. This is to minimize the

total error function. η+ is empirically set to 1.2 and η− to

0.5.

To elaborate the above description mathematically we can

start by introducing for each weight 𝑤𝑖𝑗 its individual

update value ∆𝑖𝑗 (t), which exclusively determines the

magnitude of the weight-update. This update value can be

expressed mathematically according to the learning rule

for each case based on the observed behavior of the partial

derivative during two successive weight-steps by the

following formula:

∆𝑖𝑗 𝑡 =

 𝜂+. ∆𝑖𝑗 𝑡 − 1 , 𝑖𝑓

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 .

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 − 1 > 0

𝜂−. ∆𝑖𝑗 𝑡 − 1 , 𝑖𝑓
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 .

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 − 1 < 0

∆𝑖𝑗 𝑡 − 1 , 𝑒𝑙𝑠𝑒

 (4)

Where 0<𝜂− <1<𝜂+.

A clarification of the adaptation rule based on the above

formula can be stated. It is evident that whenever the

partial derivative of the equivalent weight 𝑤𝑖𝑗 varies its

sign, which indicates that the last update was large in

magnitude and the algorithm has skipped over a local

minima, the update - value ∆𝑖𝑗 (t) is decreased by the

factor η−. If the derivative holds its sign, the update -

value will to some extent increase in order to speed up the

convergence in shallow areas. When the update-value for

each weight is settled in, the Weight-update itself tracks a

very simple rule. That is if the derivative is positive, the

weight is decreased by its update value, if the derivative is

negative, the update-value is added.

∆𝑤𝑖𝑗 𝑡 =

 −∆𝑖𝑗 𝑡 , 𝑖𝑓

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 > 0

∆𝑖𝑗 𝑡 , 𝑖𝑓
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 < 0 5

0, 𝑒𝑙𝑠𝑒

𝑤𝑖𝑗 𝑡 + 1 = 𝑤𝑖𝑗 𝑡 + ∆𝑤𝑖𝑗 𝑡 (6)

However, there is one exception. If the partial derivative

changes sign that is the previous step was too large and the

minimum was missed, the previous weight-update is

reverted

∆𝑤𝑖𝑗 𝑡 = −𝑤𝑖𝑗 𝑡 − 1 ,

 𝑖𝑓
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 .

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 <

0 (7)

Due to that „backtracking‟ weight-step, the derivative is

assumed to change its sign once again in the following

step. In order to avoid a double penalty of the update-

value, there should be no adaptation of the update-value in

the succeeding step. In practice this can be done by setting
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 − 1 = 0 in the ∆𝑖𝑗 update-rule above.

The partial derivative of the total error is given by the

following formula:

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 =

1

2

𝜕𝐸𝑝
𝜕𝑤𝑖𝑗

𝑝

𝑝=1

 𝑡 (8)

Hence, the partial derivatives of the errors must be

accumulated for all training patterns. This indicates that

the weights are updated only after the presentation of all of

the training patterns, [34]. It is noticed that resilient back-

propagation is much faster than the standard steepest

descent algorithm.

In our research we used Resilient Back - Propagation

(RBP) algorithm to train the data in MATLAB 2008a.

C. RBP Algorithm Architecture
The minimum (maximum) operator is supposed to deliver the

minimum (maximum) of two numbers; the sign operator returns +1, if
the argument is positive,-1, if the argument is negative and 0

otherwise.Repeat

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4688

 Compute Gradient
𝜕𝐸

𝜕𝑤
 𝑡

 For all weights and biases {

 if
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 ∗

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 > 0 then {

 ∆𝑖𝑗 𝑡 = minimum (∆𝑖𝑗 𝑡 − 1 ∗ 𝜂+, ∆max ⁡)

 ∆𝑤𝑖𝑗 𝑡 = −sign
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 ∗ ∆𝑖𝑗 𝑡

 𝑤𝑖𝑗 𝑡 + 1 = 𝑤𝑖𝑗 𝑡 + ∆𝑤𝑖𝑗 𝑡

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 =

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡

 }

 else if
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 ∗

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 < 0 then {

 ∆𝑖𝑗 𝑡 = maximum (∆𝑖𝑗 𝑡 − 1 ∗

𝜂−, ∆mix ⁡)

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 = 0

 }

 else if
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 ∗

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 = 0 then {

 ∆𝑤𝑖𝑗 𝑡 = −sign
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 ∗ ∆𝑖𝑗 𝑡

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 =

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 =

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡

 }
 }

Until(converged)

Fig 7. The Resilient Back-Propagation Algorithm for learning in BPN
networks

VII. NEURAL NETWORKS IN DOUBLE

DUMMY BRIDGE PROBLEM (DDBP)

There are several Neural Network architectures have been

used to solving the Double Dummy Bridge Problem. In

this paper we focus four neural network architectures viz.,

26x4, 52, 104 and 52x4 for solving the DDBP in contract

bridge.

A. 26 x 4 Representations

In the first way of deal representation, 104 input values

were used which were grouped into 52 pairs. Each pair

represented one card. The first value in a pair determined

the rank of a card (A, K, Q, etc.) and the second one

represented the suit of a card (♠, ♥, ♦ or ♣). Hence, 26

input neurons (13 pairs) were necessary to fully describe

the content of one hand which is represented in the Fig 8.

Fig 8. Neural network architecture with 26x4 input coding

Neurons in the first two hidden layers are connected

selectively. They are responsible for collecting

information about individual hands. A few schemes of

transforming card‟s rank and suit into real numbers

suitable as input values for the network were tested.

Finally the rank of a card was represented using a uniform

linear transformation to the range 0.1 to 0.9 with the

biggest values for Aces (0.9), Kings (0.83) and the smallest

for three spots (0.17) and two spots (0.1). A suit of a card

was also coded as a real number, usually by the following

mapping: 0.3 for ♠, 0.5 for ♥, 0.7 for ♦, and 0.9 for ♣.

In order to allow the network to gather full information

about cards‟ distribution, special groups of neurons were

created in subsequent layers. The Network (26x4) −

(13x4) − (7x4) − 13−1 was composed of five layers of

neurons arranged in a way depicted in Fig 8. The first

hidden layer neurons were responsible for collecting the

information about individual cards. Four groups of

neurons in the second hidden layer gathered information

about the respective hands. The last hidden layer

combined the whole information about a deal. This layer

was connected to a single output neuron, whose output

range is between 0.1 to 0.9. This denotes the particular

number of tricks. The decision boundaries were defined a

priori and target ranges for all possible number of tricks

from 0 to 13 were of pair wise equal length.

B. 52 Representation
In this architecture, positions of cards in the input layer

were fixed, i.e. from the leftmost input neuron to the

rightmost one the following cards were represented: 2♠,

3♠, . . . , K♠, A♠, 2♥, . . . , A♥, 2♦, . . . , A♦, 2♣, . .. , A♣

(Fig 9). This way each of the 52 input neurons was

assigned to a particular card from a deck and a value

presented to this neuron determined the hand to which the

respective card (assigned to this input) belonged, i.e. 1.0

for North, 0.8 for South, −1.0 for West, and −0.8 for East.

Fig 9. Neural network architecture with 52 input neurons

Layers were fully connected, i.e., in the 52 − 25 − 1

network all 52 input neurons where connected to all 25

hidden ones, and all hidden neurons were connected to a

single output neuron, whose role was the same as 26x4

representation.

C. 104 Representation
The next proposed way of coding a deal was a

straightforward extension of the 52 representation to the

104 representation. The first 52 input values represented

assignments to pairs in a similar way as in the 52

13x4

26x4

52

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4689

representation, with value 1.0 and -1.0 representing NS

cards and WE cards respectively. The remaining 52 inputs

pointed out the exact hand in a pair (value 1.0 for N and

W, and −1.0 for S and E). In both groups of input neurons

positions of cards were fixed according to the same order

Fig 10.

Fig 10. Neural network architecture with 104 input

neurons

Networks using this coding were fully connected and

usually contained two layers of hidden neurons, e.g. 104 −

30 − 4 − 1. Both two layers of hidden neurons were

connected with a single output neuron, whose role was the

same as in the previous two cases.

D. 52x4 Representation
In this deal coding 208 input neurons were divided into 4

groups, one group per hand, respectively for N, E, S and W

players. Four input neurons (one per hand) were assigned

to each card from a deck. The neuron representing a hand

to which this card actually belonged received input value

equal to 1.0. The other three neurons (representing the

remaining hands) were assigned input values equal to 0.0.

This way, a hand to which the card was assigned in a deal

was explicitly pointed out.

Fig 11. Neural network architecture with 52x4 input

representation

In this representation each suit on a given hand was

represented by 13 input neurons. The number of input

values equal to 1.0 among these neurons determined the

length of this suit on the hand, so networks using this

representation had higher chances to find both long suits

and shortnesses (which are very important in bridge),

especially voids (no cards in a suit) and singletons (one

card in a suit).

There were 4 groups of neurons in the first hidden layer,

each of them gathering information from 52 input neurons

representing one hand. This data was further compressed

in another one or two fully connected hidden layers. A

sample network using this way of coding a deal, (52x4) −

(13x4) −13−1, is presented in Fig 11. The 3-hidden layer

architecture was realized by the network (52x4) − (26x4)

− 26 − 13 − 1. All neurons from the last hidden layer

were connected to a single output neuron.

VIII. REPRESENTATION OF RESULTS

Back - Propagation Algorithm and Resilient – Back -

Propagation Algorithm were used for training and testing

the data. By using sample data both the algorithms were

compared with each other for our study. The four

architectures (26 x 4 - 25 – 1, 52 - 25 – 1, 104 - 25 – 1 and

52 x 4 - 25 – 1) were tested through Back Propagation

network by using Back - Propagation Algorithm and

Resilient - Back Propagation Algorithm in MATLAB

2008a and the results were produced in Table 1.

Table 1. Comparison of Back - Propagation Algorithm

and Resilient–Back Propagation Algorithm in different

architectures
S.No Network

Architecture

Back -

Propagation

Algorithm

Resilient – Back -

Propagation

Algorithm

1 26 x 4 - 25 - 1 15.38 45.86

2 52 - 25 - 1 55.76 65.18

3 104 - 25 - 1 69.23 71.15

4 52 x 4 - 25 - 1 71.15 75.96

The result revealed that, the data tested through Resilient –

Back - Propagation Algorithm shows better result when

compared to Back - Propagation Algorithm. Hence we

took Resilient – Back - Propagation Algorithm for our

further study.
 Gradient descent training function was used to train the

data and gradient descent weight/bias learning function

was used for learning/training the data. There are two

Sigmoidal transfer functions viz., Log Sigmoid Transfer

Function and Hyperbolic Tangent Sigmoid Functions were

used to training and testing the data. In this experiment we

used only Hyperbolic Tangent Sigmoid Function (Bipolar)

for testing the data. The above mentioned four

architectures were tested through Back Propagation

network by using Resilient - Back Propagation Algorithm

in MATLAB 2008a.

For our experimental purpose we took 208 deals from GIB

library for training and testing through Back Propagation

Network. In our study all the 208 deals we fed to BPN

with 52 input neurons, 25 hidden layers and one output

neuron. The 208 deals were grouped into 4 categories i.e.

26 x 4, 52, 104 and 52 x 4 for training for our

104

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4690

convenience. All the four groups were trained in our

MATLAB 2008a and the simulation time was also

recorded and the result obtained during training was

produced in the Table 2.

Table 2. Training sample deal results

S.No. Network

Architecture

Error (%) Simulation Time

(Min)

1 26 x 4 - 25 - 1 80.86 1.39

2 52 - 25 - 1 75.96 1.53

3 104 - 25 - 1 71.15 1.28

4 52 x 4 - 25 - 1 65.38 1.90

The training results reported that, 52 x 4 - 25 – 1 network

architecture minimized the error percentage followed by

104 - 25 - 1 network architecture when compared to other

two architectures. Among the four architectures,

simulation time taken for training the data was higher in

the 52 x 4 - 25 – 1 network architecture; hence the error

percentage was minimized and has given the highest

accuracy when compared to other three architectures.

The trained data was tested through MATLAB 2008a and

the result obtained was given in the Table 3.

Table 3. Performance comparison of different Network

Architectures
S.

No

Network

Architecture

Testing

output (%)

Error

data

Error

%

1 26 x 4 - 25 - 1 15.38 22 84.61

2 52 - 25 - 1 37.50 34 65.38

3 104 - 25 - 1 55.76 27 25.96

4 52 x 4 - 25 - 1 74.03 46 22.11

 The results revealed that, while comparing above

four architectures, 104 - 25 – 1 and 52 x 4 - 25 – 1

architectures produced better results and minimized the

error than other two architectures.

 Among those four architectures, 52 x 4 - 25 – 1

significantly produced better result and reduced the error

than other three architectures. For example, while testing

208 deals we got only 22.11% of error from 52 x 4 - 25 - 1

and other three architectures 26 x 4 - 25 – 1 (26 deals), 52

- 25 – 1 (52 deals) and 104 - 25 – 1(104 deals) produced

84.61%, 65.38% and 25.96% of error respectively which

were very much higher than 52 x 4 - 25 - 1 architecture.

Performance comparison of 52 x 4 - 25 – 1 network

architecture and 104 - 25 – 1 network architecture

Fig 12a. 52x4-25-1

Network Architecture

Fig 12b. 104-25-1 Network

Architecture

Fig 12a and Fig 12b revealed that, even though both the

Network Architectures minimized the mean squared error,

52x4-25-1 Network Architecture significantly produced

better result when compared to 104-25-1 Network

Architecture.

IX. CONCLUSION

Back propagation network was used to minimise the mean

squared error in sample data which were used for training

and testing in MATLAB 2008a. Back – Propagation

Algorithm and Resilient – Back propagation algorithms

were used in Back propagation Network. While comparing

these two algorithms, Resilient – Back propagation

algorithm produce better result which minimize the mean

squared error of the output. The best tested algorithms

were capable of discovering knowledge concerning the

game based exclusively on sample training and testing

deals. Among the different neural networks Back -

Propagation Network (BPN) appeared to be efficient in

solving the Double Dummy Bridge Problem (DDBP) in

Contract Bridge and lead to development of some new

ideas in human bridge playing and be helpful for beginners

and semi professional players in improving their bridge

skills.

REFERENCES

[1] Jacek Mandziuk, “Knowledge-free and Learning – Based methods

in Intelligent Game Playing” Springer, Chapter 5, pp 53 – 70, 2010.

[2] Jacek Mandziuk, “Computational Intelligence in Mind Games”, In:

Studies in Computational Intelligence, vol. 63, Springer, Heidelberg ,pp.
407–442,2007.

[3] I. Frank, D. A. Basin, “A Theoretical and Empirical Investigation of

Search in Imperfect Information Game,” Theor.Comput.Sci.vol.252,
no.1-2, pp 217-256, 2001.

[4] B. Yegnanarayana, “Artificial Neural Networks” Chapter 4, Printice

Hall, 2010.
[5] S.N Sivanandan and S.N Deepa, “Principles of Soft Computing”,

Chapter 3, Wiley India Ltd, First Edition, 2007

[6] H. Francis, A. Truscott, and D. Francis, The Official Encyclopedia of
Bridge, 5th ed. Memphis, TN: American Contract Bridge League Inc, 1994.

[7] W. H. Root, “The ABCs of Bridge”, Three Rivers Press, 1998.

[8] Jacek Mandziuk and Krzysztof Mossakowski, “Example – based
estimation of hands strength in the game of bridge with or without using

explicit human knowledge”, In Proc. IEEE Symp. Comput. Intell. Data

mining, pp.413-420, 2007.
[9] Jacek Mandziuk and Krzysztof Mossakowski, “Neural networks

compete with expert human players in solving the double dummy bridge

problem” Proc. of 5th Int. Conf. on Computational Intelligence and
games pp 117-124, 2009.

[10] Krzysztof Mossakowski and Jacek Mandziuk, “Learning without
human expertise: A case study of Double Dummy Bridge Problem”,

IEEE Transactions on Neural Networks, vol.20, No.2, pp 278-299, 2009.

[11] W. Jamroga, “Modeling Artificial Intelligence on a case of bridge
card play bidding”In Proce. 8th International Workshop on Intelligent

Information System, Poland, pp 276-277, 1999.

[12] A.Amit and S.Markovitch, “Learning to bid in bridge” Machine
Learning, vol.63, no.3, pp 287-327, 2006.

[13] T. Ando, Y. Sekiya and T. Uehara, “Partnership bidding for

computer bridge,” Systems and Computers in Japan, vol. 31, No. 2, pp.
72–82, 2000.

[14] T. Ando and T. Uehara, “Reasoning by agents in computer bridge

bidding,” in Computers and Games, vol. 2063, pp. 346–364, 2001.
[15] T. Ando, N. Kobayashi and T. Uehara, “Cooperation and

competition of agents in the auction of computer bridge,” Electronics

and Communications in Japan, Part 3, vol. 86, no. 12, pp. 76–86, 2003.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 12, December 2013

Copyright to IJARCCE www.ijarcce.com 4691

[16] D. Khemani, “Planning with thematic actions.” in AIPS, pp. 287–292, 1994.
[17] I. Frank, and D. A. Basin, “Strategies explained” in Proceeding 5th

Game programming Workshop in Japan. pp 1-8, 1999.

[18] Ali Awada, May Dehayni and Antoun Yaacoub, “An ATMS-Based
Tool for Locating Honor Cards in Rubber Bridge” Journal of Emerging

Trends in Computing and Information Sciences, vol. 2 No.5, 2011.
[19] M.L. Ginsberg, “GIB: Imperfect Information in a

Computaination of the trtionally Challenging Game” Journal of Artificial

Intelligence Research, vol. 14, pp 303-358, 2001.
[20] Krzysztof Mossakowski and Jacek Mandziuk, “Neural networks

and the est imation of hands s t rength in contract bridge,” in

Artificial Intelligence and Soft Computing ICAISC vol. 4029. Springer,
pp. 1189-1198, 2006.

[21] Krzysztof Mossakowski, and Jacek Mandziuk, “Artificial neural

networks for solving double dummy bridge problems”, In: AI and Soft
computing vol. 3070, Springer, pp. 915–921, 2004.

[22] S. J. J. Smith, D. S. Nau, and T. A. Throop, “Computer bridge

- A big win for AI planning,” AI Magazine. Vol.19, No.2, pp. 93-106, 1998.
[23] M. Sarkar, B. Yegnanarayana, and D. Khemani, “Application of

neural network in contract bridge bidding,” in Proc. of National Conf.

on Neural Networks and Fuzzy Systems, Anna University, Madras, pp.
144-151, 1995.

[24] B.Yegnanarayana, D. Khemani, and M. Sarkar, “Neural networks for

contract bridge bidding,” Sadhana, vol. 21, no. 3, pp. 395-413, June
1996.

[25] S.N Sivanandan and M Paulraj, “Introduction Artificial

Neural Networks”, Vikas Publishing House Private Limited, 2011.
 [26] M. Dharmalingam and R.Amalraj, “Supervised Learning in

Imperfect Information Game”, International Journal of Advanced

Research in Computer Science, vol. 4, no.2, pp. 195-200, 2013.
[27] Satish Kumar “Neural Networks A Class Room Approach”,

Chapter 6, pp.164-176, Tata McGraw-Hill Education Private Limited, 2011.

[28] J.Stuart , Russell and Peter Norvig “ Artificial Intelligence A-
Modern Approach” Chapter 18, pp. 727-748, Third Edition., USA

Printice Hall 2009.

[29] S.N Sivanandam ,S Sumathi, S.N Deepa, “Introduction to
Neural Network Using MATLAB 6.0”, Tata McGraw-Hill Publishing

Company Limited, New Delhi, 2008.

[30] Kishan Mehrotra, Chilukuri, Mohan K and Sanjay Ranka “Elements
of artificial Neural Networks”, pp 65-96, 1996.

[31] S.Haykin, “Neural Networks: A Comprehensive Foundation”,

Prentice-Hall,Englewood Cliffs ,1998.
[32] M. Riedmiller. “Advanced supervised learning in multi-layer

perceptrons- From backpropagation to adaptive learning algorithms”

Computer Standards and Interfaces, 16(5), pp.265-278, 1994.
[33] M. Riedmiller and H. Braun. “A direct adaptive method for faster

backpropagation learning: The RPROP algorithm” In E. H. Ruspini,

editor, Proceedings of the IEEE International Conference on Neural

Networks, pp 586-591, 1993.

[34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning

internal representations by error backpropagation.” Parallel Distributed
Processing: Ex-plorations in the Microstructure of Cognition, vol. 1, pp

533-536 , 1986.

[35] M.LGinsberg, “ GIB: Steps toward an expert-level bridge-playing
program”, In: International Joint Conference on Artificial Intelligence

(IJCAI 1999), Stockholm, Sweden, pp. 584–589, 1999.

[36] Jacek Mandziuk, “Incremental learning approach for board game
playing agents”,In: Proceedings of the 2000 International Conference on

Artificial Intelligence (ICAI 2000), Las Vegas, vol. 2, pp. 705–711, 2000.

[37] Jacek Mandziuk, “Incremental training in game playing domain”,
In: Proceedings of the International ICSC Congress on Intelligent

Systems & Applications Wollongong, Australia, vol. 2, pp. 18–23, 2000.
 [38] Jacek Mandziuk, “Some thoughts on using Computational

Intelligence methods in classical mind board games”, In: Procedings of

the 2008 International Joint Conference on Neural Networks (IJCNN
2008), Hong Kong, China, pp. 4001–4007, 2008.

[39] Jacek Mandziuk and Krzysztof Mossakowski, “Looking

InsideNeuralNetworks Trained to Solve Double-Dummy Bridge
Problems,” Int.Proceeding 5th Game – On Computer Games: Artif.

Intell., U.K. pp. 182-186, 2004.

[40] M. Dharmalingam and R.Amalraj, “Neural Network Architectures
for Solving the Double Dummy Bridge Problem in Contract Bridge”, in

Proce of the PSG-ACM National Conference on Intelligent Computing,

pp 31-37, 2013.

BIOGRAPHIES

Mr M Dharmalingam received his

Under Graduate, Post Graduate and

Master of Philosophy degrees from

Bharathiyar University, Coimbatore in

2000, 2004 and 2008 respectively. He

is a Doctoral Research Scholar of Sri

Vasavi College at Erode and his

research interest is Artificial Neural

Networks.

Dr. R. Amalraj is an Associated

Professor in Computer Science in the

Department of Computer Science, Sri

Vasavi College, Erode. He obtained

his Ph.D in Computer Science from

PSG College of Technology, affiliated

to Bharathiar University, Coimbatore in 2003. He is a Life

Member of Computer Society of India. He has been a

Principal Investigator for a Minor Project sponsored by

University Grants Commission, New Delhi. He has

published several research papers in reputed National and

International journals. His specific interests include

Artificial Intelligence, Image Processing and Soft

Computing.

