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Abstract: Card games are interesting for many reasons besides their connection with gambling. Bridge is being a game 

of imperfect information, it is a well defined, decision making game. The estimation of the number of tricks to be taken 

by one pair of bridge players is called Double Dummy Bridge Problem (DDBP). Artificial Neural Networks are Non – 

Linear mapping structures based on the function of the human brain. Feed Forward Neural Network is used to solve the 

DDBP in contract bridge. The learning methodology, supervised learning was used in Back – Propagation Network 

(BPN) for training and testing the bridge sample deal. In our study we compared back – Propagation algorithm and 

obtained that Resilient Back – Propagation algorithms by using Hyperbolic Tangent function and Resilient Back – 

Propagation algorithm produced better result than the other. Among various neural network architectures, in this study 

we used four network architectures viz., 26x4, 52, 104 and 52x4 for solving DDBP in contract bridge.   

 

Key words: BPN, Contract Bridge, Back – Propagation Algorithm, Resilient Back – Propagation Algorithm, 

Hyperbolic Tangent function. 

 
 

I. INTRODUCTION 
 

In the game playing domain the most popular 

Computational Intelligence (CI) disciplines are Neural 

Networks (NN), Evolutionary Methods (EM), and 

Supervised Learning (SL) [1]. Neural Networks are 

computational structure capable of processing information 

in order to finish a given task.  A Neural Network is 

composed of many simple neurons each of which receives 

input from selected other neurons, and performs basic 

operations on this input information and send its response 

out to other neurons in the network. Stimulation for the 

above way of processing information is biological anxious 

system and in particular biological brain. NN models can 

therefore be regarded as very rough simplification and 

abstraction of biological networks. NN have been 

successfully applied to various recognition, classification 

problems [2] and games [3] [36][37][38][39]. 

 

The Card game is skillful and knowledgeable which it 

increases the creativity of the human mind and there are 

extremely powerful Artificial Neural Network (ANN) 

approaches in which playing agents are equipped with 

carefully designed evaluation functions. Artificial Neural 

Networks (ANNs) are non – linear mapping structures 

based on the function of the human brain. Neural networks 

are type of artificial intelligence that attempts to imitate 

the way a human brain works rather than using a digital  

 

 

 

model [31]. The Feed-Forward Neural Networks (FFNN) 

are one of the most common types of neural network in 

use and these are often trained by the help of supervised 

learning supported by Back-propagation algorithm [5]. 

Many of the feed-forward neural networks were trained to 

solve the Double Dummy
 
Bridge Problems (DDBP) in 

bridge game [9][21][22][40]. Among the various neural 

networks, in this paper we mainly focus Back-propagation 

Network (BPN) for training and testing the data. Back - 

Propagation Algorithm and Resilient - Back Propagation 

Algorithms were used in BPN network to train the data for 

solving Double Dummy
 

Bridge Problems in Contract 

Bridge. 

 

 

II. PROBLEM DESCRIPTION 

 
In bridge games, basic representation include value of 

each card (Ace (A), King (K), Queen (Q), Jack (J ), 

10, 9, 8, 7, 6, 5, 4, 3, 2) and suit as well as the assignment 

of cards into particular hands and into public or hidden 

subsets, depending on the game rules. In the course 

learning, besides acquiring this basic information several 

other more sophisticated game features need to be 

developed by the learning system [8][9]. 
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A. The Game of Contract Bridge 

Contract bridge, usually known simply as bridge, is a 

trick - taking card game. There are four players in two 

fixed partnerships (Pairs). Partners sit facing each other. It 

is traditional to refer to the players according to their 

position at the table as North (N), East (E), South (S) 

and West (W), so N and S are partners playing against E  

and W. Example shown in Fig 1. 

 
Fig 1 Game disposition 

A standard 52 card pack is used. The cards in each 

suit rank from highest to lowest: Ace (A), King (K), 

Queen (Q), Jack (J ), 10, 9, 8, 7, 6, 5, 4, 3, 2. The dealer 

deals out all the cards one at a time so that each player 

receives 13 of them. Next level bid to decide who will 

be the declarer takes place. A bid specifies a number of 

tricks and a trump suit (or that there will be no trumps). 

The side which bids highest will try to win at least that 

number of tricks bid, with the specified suit as trumps. 

There are 5 possible trump suits: spades (♠), hearts ( ♥), 

diamonds (♦), clubs (♣) and “no-trump” which is the 

term for contracts played without a trump. After three 

consecutive passes, the last bid becomes the contract. 

The team who made the final bid will now try to make 

the contract. The first player of this team who mentioned 

the denomination (suit or no-trump) of the contract 

becomes the declarer. The declarer‟s partner is known as 

the dummy shown in Fig 2. 

 
Fig 2 Bridge Table 

 
The player to the left of the declarer leads to the first 

trick. Immediately after this opening lead, the dummy‟s 

cards are exposed.  The play proceeds clockwise. Each 

player must, if possible, play a card of the suit led. A 

player with no card of the suit led may play any card. A 

trick consists of four cards, and is won by the highest 

trump in it, or if no trumps were played by the highest 

card of the suit led. The winner of a trick leads to the 

next. The aim of the declarer is to take at least the 

number of tricks announced during the bidding phase. 

The players of the opposite pair try to prevent him from 

doing it [6][7]. In bridge, special focus in game 

representation is on the fact that players cooperate in pairs, 

thus sharing potentials of their hands. 

 

B. Double Dummy Bridge Problem 
 

To estimate the number of tricks to be taken by one pair of 

bridge players is called Double Dummy Bridge Problem 

(DDBP). A bridge problem presented for entertainment, in 

which the solver is presented with all four hands and is 

asked to determine the course of play that will achieve or 

defeat a particular contract. The partners of the declarer, 

whose cards are placed face up on the table and played by 

declarer. Dummy has few rights and may not participate in 

choices concerning the play of the hand [9].Estimating 

hands strength is a decisive aspect of the bidding phase of 

the game of bridge, since the contract bridge is a game 

with incomplete information and during the bidding phase. 

This incompleteness of information force considering 

many variants of a deal cards distributions. The player 

should take into account all these variants and quickly 

estimate the expected number of tricks to be taken in each 

case [10] [21][22] 

 

C. The Bidding phase 
 

The bidding phase is a conversation between two 

cooperating team members against an opposing 

partnership. It aims to decide who will be the declarer. 

Each partnership uses an established bidding system to 

exchange information and interpret the partner's bidding 

sequence. Each player has knowledge of his own hand and 

any previous bids only. A very interesting aspect of the 

bidding phase is cooperation of players in a North with 

South and West with East. In each, player is modeled as an 

independent, active agent that takes part in the 

communication process. The agent-based algorithm to use 

of achieve in appropriate learning, a bidding ability close 

to that of a human expert [11] [12] [13] [14] [15]. 

 

D. The Play Phase 
 

In the game, the play phase seems to be much less 

interesting than the bidding phase. Artificial Intelligence 

(AI) approaches tried to imitate human strategy of the play 

by using some “tactics”. The new system was able to find 

a strategy of play and additionally a “human” explanation 

of it [16] [17].The player to the left of the declarer leads to 

the first trick and may play any card. Immediately after 

this opening lead, the dummy's cards are exposed. Play 

proceeds clockwise. Each of the other three players in turn 

must, if possible, play a card of the same suit that the 

leader played. A player with no card of the suit led may 

play any card. A trick consists of four cards, one from 

each player, and is won by the highest trump in it, or if no 

trumps were played by the highest card of the suit led. The 

winner of a trick leads to the next and may lead any card. 

Dummy takes no active part in the play of the hand and is 
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not permitted to offer any advice or comment on the play. 

Whenever it is dummy's turn to play, the declarer must say 

which of dummy's cards is to be played, and dummy plays 

the card as instructed. Finally, the scoring depends on the 

number of tricks taken by the declarer team and the 

contract [18]. 

 

III. THE DATA REPRESENTATION OF 

GIB   LIBARARY 

 
 The data used in this game of DDBP was taken 

from the Ginsberg‟s Intelligent Bridge (GIB) Library. The 

data created by Ginsberg‟s Intelligent Bridge player 

[19][35]. In our research for implementing GIB library 

data we used MATLAB 2008a.The GIB library includes 

7,17,102 deals and for each of them provides the number 

of tricks to be taken by N S pair for each combination of 

the trump suit and the hand which makes the opening lead. 

Together there are 20 numbers of each deal i.e. 5 trump 

suits by 4 sides. Here 5 trump suits are No-trumps, spades, 

Hearts, Diamonds and Clubs. No-trump which is the term 

for contracts played without trump. Four sides are West, 

North, East and South. So North and South are partners 

playing against East and West [20]. 

 

IV. SOFT COMPUTING 
 

Nowadays the on-going development of computer 

technology, soft computing will considerably enhance 

traditional computation methods. The machine-intelligent 

behavior is determined by the flexibility of the 

architecture, the ability to recognize machine 

incorporations of human expertise, laws of inference 

procedure and the high speed of learning.  All these titles 

are the main constituents of the research area named Soft 

Computing and it is a practical alternative for solving 

mathematically complex problems [4]. Soft computing 

involves partnership of several fields, the most important 

being Artificial Neural Networks (ANN), Fuzzy Logic 

(FL), Genetic Algorithm (GA) and Evolutionary 

Computations (EC) [5]. Among the above fields, Artificial 

Neural Networks used to solve the Double Dummy Bridge 

Problem in Contract Bridge.  

 

V. ARTIFICIAL NEURAL NETWORKS 

(ANN) 

Artificial Neural Network consists of several processing 

units which are interconnected according to some topology 

to accomplish a pattern classification task. An Artificial 

Neural Network is configured for a specific application, 

such as pattern recognition or data classification through 

learning process. ANNs are Non-linear information 

processing devices, which are built from interconnected 

elementary processing devices called neurons 

[23][24][25]. 

 

In Artificial Neural Networks following the supervised 

learning, each input vector requires a corresponding target 

vector, which represents the desired output. The input 

vector along with the target vector is called training pair. 

In supervised learning, a supervisor is required for error 

minimization. Hence the network trained by this method is 

said to be using supervised learning methodology. In 

supervised learning, it is assumed that the correct target 

output values are known for each input pattern 

[26][27][28][29][30][31][32]. 

 

A. Activation Functions 

 The activation function is used to determine the 

output response of a neuron. The sum of the weighted 

input signal is applied with an activation to obtain the 

response. For neurons in same layer, same activation 

functions are used. There may be linear as well as Non - 

Linear activation functions. The Non–Linear activation 

functions are used in a Multilayer Neural Network. There 

are several activation functions namely as follows Identity 

function, Binary step function, bipolar step function, 

Sigmoidal functions and Ramp functions. 

Among the above activation functions, the Sigmoidal 

functions are widely used in Back-propagation networks. 

Because of the relationship between the value of the 

functions at a point and the value of derivative at that point 

which reduce the computational burden during training. 

There are two types of sigmoidal functions viz., binary 

sigmoidal function and bipopular sigmoidal functions [27]. 

In this paper we have focused only Binary Sigmoidal 

function. If the network uses a binary it is better to convert 

it to bipolar form and use the bipolar sigmoid function 

activation function or hyperbolic tangent function shown 

in the Fig 4. 

 

Fig 4.Logistic function and Hyperbolic Tangent function 

 

ii. B. Supervised Learning Methodology   
 

Learning or training is a process by means of which a 

neural network adopts itself to stimulus by making proper 

parameter adjustments, resulting in the production of 

desired response. The Learning in an Artificial Neural 

Networks can be generally classified into three categories 

viz., Supervised Learning, Unsupervised Learning and 

Reinforcement Learning. Among these three categories we 

mainly focused on Supervised Learning in this paper. 

In Artificial Neural Networks following the supervised 

learning, each input vector requires a corresponding target 

vector, which represents the desired output. The input 

vector along with the target vector is called training pair. 
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In supervised learning, a supervisor is required for error 

minimization. Hence the network trained by this method is 

said to be using supervised learning methodology. In 

supervised learning, it is assumed that the correct target 

output values are known for each input pattern 

[5][26][27][28]. 

 

VI. Architecture of Back-propagation Network 

(BPN) 

 
A Back-propagation network is a multilayer, Feed-

Forward Neural Network (FFNN) with an input layer, a 

hidden layer and an output layer which is shown in the Fig 

5. The neuron in the hidden and the output layers has 

biases which are connections from units whose output is 

always is 0 to 1.  

 
 

Fig 5 Architecture of BPN 

 

BPN is a multi – layer forward network using extended 

gradient-descent based delta-learning rule, commonly 

known as Back-propagation rule. Back-propagation 

provides a computationally efficient method for changing 

the weights in a feed-forward network, with differentiable 

activation function units to learn a training set of input 

output patterns. The Back-propagation network 

implements the generalized delta rule. A gradient – 

descent method, it minimize the total squared error of the 

output computed by the network. The network is trained 

by supervised learning method [5][24][26]. 

 

i. A. BPN training algorithm 

 The training algorithm of Back-propagation 

invokes four stages viz., Initialization of weights, Feed-

forward, Back-propagation of errors and Updating of the 

weights and bias. 

  

 

 

The detailed algorithm is shown in Fig 6.  

function BACK-PROP-LEARNING(example, network) 

returns a neural network 

   inputs: example, a set of examples, each with input vector 

x and output vector y 

              network, a multilayer network with L layers, weights 

Wj,i, activation function g 

   repeat 

         for each e in examples do 

               for each node j in the input layer do  𝒂𝒋  ←  𝒙𝒋 [𝑒] 

for ℓ = 2 to M do 

             𝑖𝑛𝑗 ←  𝑊𝑗 ,𝑖
𝑗

𝑎𝑗                                   

                                                 𝑎𝑖 ← 𝑔   𝑖𝑛𝑗          

              for each node i in the output layer do 

∆𝑖← 𝑔ʹ ( 𝑖𝑛𝑖)   ×  (𝑦𝑖  [𝑒] – 𝑎𝑖) 

                      for ℓ = M – 1 to l do 

                   for each node j in layer ℓ do 

∆𝑗   ←  𝑔ʹ  𝑖𝑛𝑗   𝑊𝑗 ,𝑖
𝑖

  ∆𝑖    

                       for each node i in layer ℓ + 1 do 

 𝑊𝑗 ,𝑖 ← 𝑊𝑗 ,𝑖    +  𝛼 × 𝑎𝑗   × ∆𝑖   

    until some stopping criterion is satisfied 

    return NEURAL-NET-HYPOTHESIS(network) 

Fig 6  The back-propagation algorithm for learning in BPN 

networks 

For the mathematically inclined, the back-propagation 

equations are derived from first principals. The squared 

error on a single example is defined as, 
𝐸

=
1

2
 (

𝑖

𝑦𝑖

− 𝑎𝑖)
2                                                                                                  (1)    

where the sum is over the nodes in the output layer. To 

obtain the gradient with respect to a specific weight Wj,i  in 

the output layer, one should need only expand out the 

activation 𝛼i as all other terms in the summation are 

unaffected by Wj,i  : 

 
𝜕𝐸

𝜕𝑤𝑖,𝑗
= − 𝑦𝑖 − 𝑎𝑖 

𝜕𝑎𝑖
𝜕𝑤𝑖,𝑗

= − 𝑦𝑖 − 𝑎𝑖 
𝜕𝑔 𝑖𝑛𝑖 

𝜕𝑤𝑖,𝑗
     

= − 𝑦𝑖 − 𝑎𝑖 𝑔
′ 𝑖𝑛𝑖 

𝜕𝑖𝑛𝑖
𝜕𝑤𝑖,𝑗
= − 𝑦𝑖

− 𝑎𝑖 𝑔
′ 𝑖𝑛𝑖 

𝜕

𝜕𝑤𝑖,𝑗
  𝑤𝑖,𝑗

𝑗

𝑎𝑗                        

= − 𝑦𝑖 − 𝑎𝑖 𝑔
′ 𝑖𝑛𝑖 𝑎𝑗

= −𝑎𝑗∆𝑖 ,                                                                            (2)   

 

With ∆i defined as before. To obtain the gradient with 

respect to the Wk,j weights connecting the input layer to the 

hidden layer, to keep the entire summation over i because 

each output value ai may be affected by changes in Wk,j. 

Activations of  aj also be expanded and the derivative 

operator propagates back through the network 

 
𝜕𝐸

𝜕𝑤𝑖,𝑗
= − (

𝑖

𝑦𝑖 − 𝑎𝑖) 
𝜕𝑎𝑖
𝜕𝑤𝑖,𝑗

= − (

𝑖

𝑦𝑖 − 𝑎𝑖) 
𝜕𝑔 𝑖𝑛𝑖 

𝜕𝑤𝑘,𝑗

     

 

 

= − (

𝑖

𝑦𝑖 − 𝑎𝑖)𝑔
′ 𝑖𝑛𝑖 

𝜕𝑖𝑛𝑖
𝜕𝑤𝑘,𝑗

= − ∆𝑖
𝑖

𝜕

𝜕𝑤𝑖,𝑗
  𝑤𝑖,𝑗

𝑗

𝑎𝑗  

 

= − ∆𝑖
𝑖

𝑤𝑘,𝑗  
𝜕𝑎𝑖
𝜕𝑤𝑘,𝑗

 = − ∆𝑖
𝑖

𝑤𝑗 ,𝑖

𝜕𝑔 𝑖𝑛𝑗  

𝜕𝑤𝑘,𝑗

   

 
 

= − ∆𝑖
𝑖

𝑤𝑘,𝑗𝑔
′ 𝑖𝑛𝑗  

𝜕𝑖𝑛𝑖
𝜕𝑤𝑘,𝑗
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= − ∆𝑖
𝑖

𝑤𝑘,𝑗𝑔
′ 𝑖𝑛𝑗  

𝜕

𝜕𝑤𝑘,𝑗

  𝑤𝑘,𝑗

𝑘

𝑎𝑘           

 
 

    = − ∆𝑖
𝑖

𝑤𝑘,𝑗𝑔
′ 𝑖𝑛𝑗  𝑎𝑘 = −𝑎𝑘∆𝑗 ,                                                          (3) 

where ∆j is defined as before. The update rules were 

obtained earlier from intuitive considerations. It is also 

clear that the process can be continued for networks with 

more than one hidden layer, which justifies the above 

general algorithm [28-29][32-33]. 

 

B. The Resilient Back-Propagation (RBP) 

Algorithm  

 
The algorithm RBP is a local adaptive learning scheme, 

performing supervised batch learning in feed – forward 

neural networks. The basic principle of RBP is to 

eliminate the harmful influence of the size of the partial 

derivative on the weight step. As a consequence, only the 

sign of the derivative is considered to indicate the 

direction of the weight update.   

 

The algorithm acts on each weight separately. For each 

weight, if there was a sign change of the partial derivative 

of the total error function compared to the last iteration, 

the update value for that weight is multiplied by a factor 

η−, where 0 <η− < 1. If the last iteration produces the 

same sign, the update value is multiplied by a factor of η 

+, where η+ > 1. The update values are calculated for each 

weight in the above manner, and finally each weight is 

changed by its own update value, in the opposite direction 

of that weight's partial derivative. This is to minimize the 

total error function. η+ is empirically set to 1.2 and η− to 

0.5. 

 

To elaborate the above description mathematically we can 

start by introducing for each weight 𝑤𝑖𝑗  its individual 

update value ∆𝑖𝑗  (t), which exclusively determines the 

magnitude of the weight-update. This update value can be 

expressed mathematically according to the learning rule 

for each case based on the observed behavior of the partial 

derivative during two successive weight-steps by the 

following formula: 

 

∆𝑖𝑗  𝑡 =

 
 
 

 
 𝜂+. ∆𝑖𝑗  𝑡 − 1 ,       𝑖𝑓   

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 .

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 − 1 > 0

𝜂−. ∆𝑖𝑗  𝑡 − 1 ,      𝑖𝑓   
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 .

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 − 1 < 0

∆𝑖𝑗  𝑡 − 1 ,              𝑒𝑙𝑠𝑒                                               

            (4) 

 

Where 0<𝜂− <1<𝜂+. 

 

A clarification of the adaptation rule based on the above 

formula can be stated. It is evident that whenever the 

partial derivative of the equivalent weight 𝑤𝑖𝑗  varies its 

sign, which indicates that the last update was large in 

magnitude and the algorithm has skipped over a local 

minima, the update - value ∆𝑖𝑗  (t) is decreased by the 

factor η−. If the derivative holds its sign, the update - 

value will to some extent increase in order to speed up the 

convergence in shallow areas. When the update-value for 

each weight is settled in, the Weight-update itself tracks a 

very simple rule. That is if the derivative is positive, the 

weight is decreased by its update value, if the derivative is 

negative, the update-value is added. 

 

∆𝑤𝑖𝑗  𝑡 =

 
 
 

 
 −∆𝑖𝑗  𝑡 ,       𝑖𝑓    

𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 > 0                                                

∆𝑖𝑗  𝑡 ,           𝑖𝑓    
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 < 0                                        5   

0,                   𝑒𝑙𝑠𝑒                                                                        

  

 

 

𝑤𝑖𝑗  𝑡 + 1 = 𝑤𝑖𝑗  𝑡 + ∆𝑤𝑖𝑗  𝑡                                                            (6) 

 

However, there is one exception. If the partial derivative 

changes sign that is the previous step was too large and the 

minimum was missed, the previous weight-update is 

reverted 

 
∆𝑤𝑖𝑗  𝑡 = −𝑤𝑖𝑗  𝑡 − 1 , 

                                            𝑖𝑓
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 .

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 <

0                                                               (7) 
 

 

Due to that „backtracking‟ weight-step, the derivative is 

assumed to change its sign once again in the following 

step. In order to avoid a double penalty of the update-

value, there should be no adaptation of the update-value in 

the succeeding step. In practice this can be done by setting 
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 − 1 = 0 in the ∆𝑖𝑗  update-rule above. 

 

The partial derivative of the total error is given by the 

following formula: 

 
𝜕𝐸

𝜕𝑤𝑖𝑗
 𝑡 =

1

2
 

𝜕𝐸𝑝
𝜕𝑤𝑖𝑗

𝑝

𝑝=1

 𝑡                                                                        (8) 

 

 

Hence, the partial derivatives of the errors must be 

accumulated for all training patterns. This indicates that 

the weights are updated only after the presentation of all of 

the training patterns, [34]. It is noticed that resilient back-

propagation is much faster than the standard steepest 

descent algorithm.  

 

In our research we used Resilient Back - Propagation 

(RBP) algorithm to train the data in MATLAB 2008a. 

 
 

C. RBP Algorithm Architecture 
The minimum (maximum) operator is supposed to deliver the 

minimum (maximum) of two numbers; the sign operator returns +1, if 
the argument is positive,-1, if the argument is negative and 0 

otherwise.Repeat 
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 Compute Gradient 
𝜕𝐸

𝜕𝑤
 𝑡  

 For all weights and biases { 

  if    
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 ∗

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 > 0  then { 

  ∆𝑖𝑗  𝑡 = minimum (∆𝑖𝑗  𝑡 − 1 ∗ 𝜂+, ∆max ⁡) 

  ∆𝑤𝑖𝑗  𝑡 = −sign  
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡  ∗ ∆𝑖𝑗  𝑡  

  𝑤𝑖𝑗  𝑡 + 1 = 𝑤𝑖𝑗  𝑡 + ∆𝑤𝑖𝑗  𝑡  

  
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 =

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡  

  } 

  else if   
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 ∗

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 < 0  then { 

   ∆𝑖𝑗  𝑡 = maximum (∆𝑖𝑗  𝑡 − 1 ∗

𝜂−, ∆mix ⁡) 

   
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 = 0 

  } 

  else if   
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 ∗

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 = 0  then { 

  ∆𝑤𝑖𝑗  𝑡 = −sign  
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡  ∗ ∆𝑖𝑗  𝑡  

  
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 =

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡  

  
𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡 − 1 =

𝜕𝐸

𝜕𝑤 𝑖𝑗
 𝑡  

 } 
       }  

Until(converged) 

Fig 7. The Resilient Back-Propagation Algorithm for learning in BPN 
networks 

 

VII. NEURAL NETWORKS IN DOUBLE 

DUMMY BRIDGE PROBLEM (DDBP) 

  
There are several Neural Network architectures have been 

used to solving the Double Dummy Bridge Problem. In 

this paper we focus four neural network architectures viz., 

26x4, 52, 104 and 52x4 for solving the DDBP in contract 

bridge.  

 

A.   26 x 4 Representations 

 
In the first way of deal representation, 104 input values 

were used which were grouped into 52 pairs. Each pair 

represented one card. The first value in a pair determined 

the rank of a card (A, K, Q, etc.) and the second one 

represented the suit of a card (♠, ♥, ♦ or ♣). Hence, 26 

input neurons (13 pairs) were necessary to fully describe 

the content of one hand which is represented in the Fig 8. 

 

 

 

 

 

 

 

 

Fig 8. Neural network architecture with 26x4 input coding 

Neurons in the first two hidden layers are connected 

selectively. They are responsible for collecting 

information about individual hands.  A few schemes of 

transforming card‟s rank and suit into real numbers 

suitable as input values for the network were tested. 

Finally the rank of a card was represented using a uniform 

linear transformation to the range 0.1 to 0.9 with the 

biggest values for Aces (0.9), Kings (0.83) and the smallest 

for three spots (0.17) and two spots (0.1). A suit of a card 

was also coded as a real number, usually by the following 

mapping: 0.3 for ♠, 0.5 for ♥, 0.7 for ♦, and 0.9 for ♣. 

 
In order to allow the network to gather full information 

about cards‟ distribution, special groups of neurons were 

created in subsequent layers.  The Network (26x4) − 

(13x4) − (7x4) − 13−1 was composed of five layers of 

neurons arranged in a way depicted in Fig 8. The first 

hidden layer neurons were responsible for collecting the 

information about individual cards. Four groups of 

neurons in the second hidden layer gathered information 

about the respective hands. The last hidden layer 

combined the whole information about a deal. This layer 

was connected to a single output neuron, whose output 

range is between 0.1 to 0.9. This denotes the particular 

number of tricks. The decision boundaries were defined a 

priori and target ranges for all possible number of tricks 

from 0 to 13 were of pair wise equal length. 

 

B.  52  Representation 
In this architecture, positions of cards in the input layer 

were fixed, i.e. from the leftmost input neuron to the 

rightmost one the following cards were represented: 2♠, 

3♠, . . . , K♠, A♠, 2♥, . . . , A♥, 2♦, . . . , A♦, 2♣, . .. , A♣ 

(Fig 9). This way each of the 52 input neurons was 

assigned to a particular card from a deck and a value 

presented to this neuron determined the hand to which the 

respective card (assigned to this input) belonged, i.e. 1.0 

for North, 0.8 for South, −1.0 for West, and −0.8 for East. 

 
Fig 9. Neural network architecture with 52 input neurons 

 

Layers were fully connected, i.e., in the 52 − 25 − 1 

network all 52 input neurons where connected to all 25 

hidden ones, and all hidden neurons were connected to a 

single output neuron, whose role was the same as 26x4 

representation. 

 

C.   104  Representation 
The next proposed way of coding a deal was a 

straightforward extension of the 52 representation to the 

104 representation. The first 52 input values represented 

assignments to pairs in a similar way as in the 52 

13x4 

26x4 

52 
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representation, with value 1.0 and -1.0 representing NS 

cards and WE cards respectively. The remaining 52 inputs 

pointed out the exact hand in a pair (value 1.0 for N and 

W, and −1.0 for S and E). In both groups of input neurons 

positions of cards were fixed according to the same order 

Fig 10. 

 
Fig 10. Neural network architecture with 104 input 

neurons 

Networks using this coding were fully connected and 

usually contained two layers of hidden neurons, e.g. 104 − 

30 − 4 − 1. Both two layers of hidden neurons were 

connected with a single output neuron, whose role was the 

same as in the previous two cases.  

 

D.  52x4 Representation 
In this deal coding 208 input neurons were divided into 4 

groups, one group per hand, respectively for N, E, S and W 

players. Four input neurons (one per hand) were assigned 

to each card from a deck. The neuron representing a hand 

to which this card actually belonged received input value 

equal to 1.0. The other three neurons (representing the 

remaining hands) were assigned input values equal to 0.0. 

This way, a hand to which the card was assigned in a deal 

was explicitly pointed out. 

 

 

 
 

 

 

 

 

 

 

 

 
Fig 11. Neural network architecture with 52x4 input 

representation 

In this representation each suit on a given hand was 

represented by 13 input neurons. The number of input 

values equal to 1.0 among these neurons determined the 

length of this suit on the hand, so networks using this 

representation had higher chances to find both long suits 

and shortnesses (which are very important in bridge), 

especially voids (no cards in a suit) and singletons (one 

card in a suit).  

 

There were 4 groups of neurons in the first hidden layer, 

each of them gathering information from 52 input neurons 

representing one hand. This data was further compressed 

in another one or two fully connected hidden layers. A 

sample network using this way of coding a deal, (52x4) − 

(13x4) −13−1, is presented in Fig 11. The 3-hidden layer 

architecture was realized by the network (52x4) − (26x4) 

− 26 − 13 − 1. All neurons from the last hidden layer 

were connected to a single output neuron. 

 

VIII. REPRESENTATION OF RESULTS 

Back - Propagation Algorithm and Resilient – Back - 

Propagation Algorithm were used for training and testing 

the data. By using sample data both the algorithms were 

compared with each other for our study. The four 

architectures (26 x 4 - 25 – 1, 52 - 25 – 1, 104 - 25 – 1 and 

52 x 4 - 25 – 1)  were tested through Back Propagation 

network by using Back - Propagation Algorithm and 

Resilient - Back Propagation Algorithm in MATLAB 

2008a and the results were produced in Table 1.  

 

Table 1. Comparison of Back - Propagation Algorithm 

and Resilient–Back Propagation Algorithm in different 

architectures 
S.No Network 

Architecture 

Back - 

Propagation 

Algorithm 

Resilient – Back -  

Propagation 

Algorithm 

1 26 x 4 - 25 - 1 15.38 45.86 

2 52 - 25 - 1 55.76 65.18 

3 104 - 25 - 1 69.23 71.15 

4 52 x 4 - 25 - 1 71.15 75.96 

 

The result revealed that, the data tested through Resilient – 

Back - Propagation Algorithm shows better result when 

compared to Back - Propagation Algorithm. Hence we 

took Resilient – Back - Propagation Algorithm for our 

further study. 
  Gradient descent training function was used to train the 

data and gradient descent weight/bias learning function 

was used for learning/training the data. There are two 

Sigmoidal transfer functions viz., Log Sigmoid Transfer 

Function and Hyperbolic Tangent Sigmoid Functions were 

used to training and testing the data. In this experiment we 

used only Hyperbolic Tangent Sigmoid Function (Bipolar) 

for testing the data. The above mentioned four 

architectures were tested through Back Propagation 

network by using Resilient - Back Propagation Algorithm 

in MATLAB 2008a.  

 
For our experimental purpose we took 208 deals from GIB 

library for training and testing through Back Propagation 

Network. In our study all the 208 deals we fed to BPN 

with 52 input neurons, 25 hidden layers and one output 

neuron. The 208 deals were grouped into 4 categories i.e. 

26 x 4, 52, 104 and 52 x 4 for training for our 

104 
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convenience. All the four groups were trained in our 

MATLAB 2008a and the simulation time was also 

recorded and the result obtained during training was 

produced in the Table 2.  

 

Table 2. Training sample deal results 

 
S.No. Network 

Architecture 

Error (%) Simulation Time 

(Min) 

1 26 x 4 - 25 - 1 80.86 1.39 

2 52 - 25 - 1 75.96 1.53 

3 104 - 25 - 1 71.15 1.28 

4 52 x 4 - 25 - 1 65.38 1.90 

 

The training results reported that, 52 x 4 - 25 – 1 network 

architecture minimized the error percentage followed by 

104 - 25 - 1 network architecture when compared to other 

two architectures. Among the four architectures, 

simulation time taken for training the data was higher in 

the 52 x 4 - 25 – 1 network architecture; hence the error 

percentage was minimized  and has given the highest 

accuracy when compared to other three architectures.    

The trained data was tested through MATLAB 2008a and 

the result obtained was given in the Table 3.  

Table 3. Performance comparison of different Network 

Architectures 
S. 

No 

Network 

Architecture 

Testing 

output (%) 

Error 

data 

Error 

% 

1 26 x 4 - 25 - 1 15.38 22 84.61 

2 52 - 25 - 1 37.50 34 65.38 

3 104 - 25 - 1 55.76 27 25.96 

4 52 x 4 - 25 - 1 74.03 46 22.11 

 

 The results revealed that, while comparing above 

four architectures, 104 - 25 – 1 and 52 x 4 - 25 – 1 

architectures produced better results and minimized the 

error than other two architectures.  

 Among those four architectures, 52 x 4 - 25 – 1 

significantly produced better result and reduced the error 

than other three architectures. For example, while testing 

208 deals we got only 22.11% of error from 52 x 4 - 25 - 1 

and other three architectures 26 x 4 - 25 – 1 (26 deals), 52 

- 25 – 1 (52 deals) and 104 - 25 – 1(104 deals) produced 

84.61%, 65.38% and 25.96% of error respectively which 

were very much higher than 52 x 4 - 25 - 1 architecture.   

 

Performance comparison of 52 x 4 - 25 – 1 network 

architecture and 104 - 25 – 1 network architecture 

 

  
Fig 12a. 52x4-25-1 

Network Architecture 

Fig 12b. 104-25-1 Network 

Architecture 

 

Fig 12a and Fig 12b revealed that, even though  both the 

Network Architectures minimized the mean squared error, 

52x4-25-1 Network Architecture significantly produced 

better result when compared to 104-25-1 Network 

Architecture.  

 

IX. CONCLUSION 

 
Back propagation network was used to minimise the mean 

squared error in sample data which were used for training 

and testing in MATLAB 2008a. Back – Propagation 

Algorithm and Resilient – Back propagation algorithms 

were used in Back propagation Network. While comparing 

these two algorithms, Resilient – Back propagation 

algorithm produce better result which minimize the mean 

squared error of the output. The best tested algorithms 

were capable of discovering knowledge concerning the 

game based exclusively on sample training and testing 

deals.  Among the different neural networks Back - 

Propagation Network (BPN) appeared to be efficient in 

solving the Double Dummy Bridge Problem (DDBP) in 

Contract Bridge and lead to development of some new 

ideas in human bridge playing and be helpful for beginners 

and semi professional players in improving their bridge 

skills. 
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