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Abstract: The paper represents the theory of designing of quadrature  mirror filter (QMF).it was resent  that Mc 

Clellen transform could be used to generate 2- d diamond shape  QMF Filter. In this paper the problem of identifying 

frequencies of disturbances in flexible systems using advanced Digital Signal processing techniques such as filter banks 

and Quadrature Mirror Filters is addressed. In a number of situations there is a need to design a controller for a system 

with flexible modes In this paper  the problem of identifying frequencies of disturbances in flexible systems using 

advanced Digital Signal Processing techniques such as filter banks and Quadrature Mirror Filters is addressed. In a 

number of situations there is a need to design a controller for a system with flexible modes This includes design of 

decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMf.  

 

I.  INTRODUCTION 

This paper  presents the theory of the wavelet transform 

(WT) and its connection to the theory of multirate filter 

banks. The wavelet transform was first introduced in the 

mathematical literature by Grossmann and Morlet in 1984, 

and further treated by Meyer, Daubechies, Mallat, and 

others in the late 1980’s.In particular, works by 

Daubechies and Mallat established the connection between 

wavelets and digital filter banks that, as a result, generated 

much interest and activity in the respective areas. The 

theory of multirate filter banks, on the other hand, was 

first developed in the context of coding applications in the 

late 1970’s by Croisier, Esteban, and Galand who 

introduced a special class of filters called quadrature 

mirror filters (QMF), and also by  rochiere, Webber, and 

Flanagan who introduced a similar technique in the 

context of speech coding . Subsequently, solutions to the 

perfect reconstruction (PR) filter bank for the  two-band 

and the general M-band case were found, and a general 

theory on the design of multirate filter banks was also 

established. Some historical perspectives on the 

development of wavelets and filter banks can be found in, 

and in-depth studies of wavelets and filter banks can be 

found in. This paper is organized as describes maximally 

decimated two channel filter banks, presents the wavelet 

transform in the continuous-time and discrete-time domain 

and shows its relationship to the two-channel filter bank, 

covers design issues of the wavelet filter bank, and ends 

with a brief summary. 

 

II.  THE TWO-CHANNEL FILTER BANK 

Digital Filter banks are commonly used in applications 

that require a way of transforming the input signal into a  

frequency or time-frequency domain representation. As 

the name suggests, this is done through a bank of filters 

that divides the signal spectrum into approximate 

frequency subbands or  channels and generates a time-

indexed series of coefficients that represent the frequency-

localized signal energy within each band A uniform two- 

 

 

 

channel filter bank is shown in Figure 4.1(a) and the 

corresponding magnitude response in Figure 4.1b). 
  

 
 

 

 
Figure 4.1: Two-channel filter bank (a) analysis and 

synthesis filter bank structure (b) frequency response of 

analysis filters H0(z) and H1(z) 
 

In the analysis stage, the input signal x(n) is filtered by the 

low-pass filter H0(z) and the high-pass filter H1(z) and 

then down-sampled by a factor of 2 to produce subband 

signals y0(n) and y1(n), respectively. In the synthesis 

stage, the subband signals y0(n) and y1(n) are first up-

sampled by a factor of 2, then passed through low-pass 

filter G0(z) and high-pass filter G1(z), respectively, and 

finally added together to produce the reconstructed signal 

ˆx(n). In the z-domain, the down-sampling and up-

sampling operations can be expressed as 
 

g(n) = (↓2)f(n) : G(z) =1\2[F(z
1/2

) + F(−z
1/2

)]               (4.1) 

g(n) = (↑2)f(n) : G(z) = F(z
2
).                                        (4.2) 

 

Using equations 4.1 and 4.2 and the input-output 

relationship of the filter bank in Figure4.1,  

we obtain 
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where the first term represents the amplitude and phase 

distortions that result from thefiltering operations and the 

second term represents the aliasing and imaging 

distortionsthat result from the down-sampling and up-

sampling operations. The first term is calledthe distortion 

transfer function, T(z), and the second term is called the 

aliasing transferfunction 

 

 
Since any distortion caused by the filter bank is 

undesirable, especially aliasing error [37],the design of the 

analysis and synthesis filters revolve around the 

requirements of aliascancellation (AC) and perfect 

reconstruction (PR). The conditions for AC and PR can be 

summarized as follows. 
 

 Alias Cancellation: Choose the synthesis filters as 

 
Then,  

 
Notice that the AC condition simplifies the design to 

designing only filters H0(z) and H1(z) and minimizing the 

distortion in T(z). 
 

 Perfect Reconstruction: For PR, we need 

 
where c = constant and l ∈  Z, and 

 
where the reconstructed signal is just a delay of the input 

signal by z−l. 
 

III.  CLASSIC QMF FILTERS (NON-PR) 

The “classic” QMF filters proposed by Croisier, Esteban, 

and Galand [41] are designed by first imposing the 

relationship 

 
which relates the low-pass and high-pass filter through a 

simple sign alteration. Equation 

4.12 can also be expressed in the Fourier domain as 

 
 

H1(ejw) in equation 4.13 represents a high-pass filter 

whose response is a mirror image of the low-pass filter 

response |H0(ejw)| with respect to the quadrature 

frequency, π 2 . Using the AC condition of equations 4.6 

and 4.7, and equation 4.12 above, the distortion transfer 

function can now be simplified to 

 
 

Note that the design of QMF filters according to 4.14 only 

involves one filter, H0(z). Several well known solutions to 

this exist and a few are described next. First, note that for 

PR we need 
 

 
The only solution to 4.15 using an FIR filter is the trivial 

Haar filter as all other solutions involve some type of 

distortion in T(z). Among more practical FIR solutions, 

Johnston’s 
 

Filters offer small reconstruction error and good overall 

performance. Johnston’s filters are designed to provide 

high stop-band attenuations and good transition-band 

characteristics while eliminating phase distortion and 

minimizing amplitude distortion in T(z). Among IIR 

solutions, the well known elliptic filters offer a solution 

where amplitude distortion is eliminated and phase 

distortion is minimized. 

 

IV.  SMITH-BARNWELL FILTERS (PR 

ORTHOGONAL) 

The solution proposed by Smith and Barnwell [66] is 

based on the AC condition and the Relationship 
 

 
where filters H0(z) and H1(z) (as well as G0(z) and G1(z)) 

are FIR filters of odd order N. Also called conjugate 

quadrature filters (CQF), these filters provide the 

quadrature mirror property like QMF filters, but also the 

perfect reconstruction property as T(z) can now be made to 

be a pure delay. The distortion function T(z) can be 

simplified using equations 4.6, 4.7, 4.16 as 
 

 
Note that the design of CQF filters also involves only one 

filter, H0(z), as the other three can be derived using 

equations 4.6, 4.7, 4.16. To obtain PR in equation 4.17, we 

need 
 

 
If we define 

 
then we can re-write 4.18 as 

 
P(z) represents a zero-phase half-band filter in which all 

even-indexed terms are zero except the term at z0. 

Description and design of half-band filters have already 

been discussed extensively in the filter bank literature, e.g. 

[35]. Once half-band filter P(z) is designed, filter H0(z) 

can be obtained through symmetrical factorization of 4.19 

[67]. In addition to PR, Smith-Barnwell filters also 
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provide the orthogonality property that is described next. 

First, using equation 4.16 in 4.18, we obtain 
 

 
Next, we can re-write equation 4.16 and obtain 
 

 
and using the equality relationship given by 
 

 
 

we can substitute 4.23 in equations 4.16 and 4.22 to obtain 

 

 
Equations 4.18, 4.21, and 4.24 represent the orthogonality 

condition in the z-domain. The term Hi(z)Hi(z−1) in 

equations 4.18 and 4.19 represents the auto-correlation of 

Hi(z), and the term H0(z−1)H1(z) in 4.24 represents the 

cross-correlation between H0(z) and H1(z) [68]. Equations 

4.18 and 4.21 are also known as the power symmetric 

property  [35]. In the time domain, equations 4.18, 4.21, 

and 4.24 can be expressed as  
 

 
or more succinctly as  
 

 
Where  

 
 

In general, Smith-Barnwell filters provide PR, finite 

support, and orthogonality, but lack linear phase (except 

for the trivial Haar filter). 

 

V.  GENERALIZED QMF FILTERS  (PR 

LINEAR PHASE) 

Generalized QMF filters represent PR solutions that 

sacrifice orthogonality for linear phase. Using equation 4.4 

and the AC condition, we obtain 

 
 

where filters H0(z) and H1(−z) can be of even or odd 

order and the lengths of the two are not necessarily equal. 

Unlike the CQF filters, the design now involves first 

designing the two analysis filters H0(z) and H1(−z), and 

then obtaining the two synthesis filters using equations 4.6 

and 4.7. To satisfy PR, we impose 
 

 
where l ∈  Z.  Note that the delay term on the right-hand 

side has to be odd since all even terms of H0(z)H1(−z) 

cancel with the even terms of H0(−z)H1(z). Defining 
 

 
we can formulate the PR condition as 
 

 
which again represents a zero-phase half-band filter. 

However, since orthogonality is no longer required, P(z) in 

4.31 is no longer factored symmetrically but factored so as 

to provide symmetry in H0(z) and H1(z) separately. Detail 

and examples of this procedure can be found in [35, 64]. 

Similar to the orthogonality condition given in the z-

domain and time-domain, we can summarize the 

biorthogonality condition in the z-domain as  
 

 
and in the time-domain as 

 
Note that biorthogonality is a more general condition that 

provides orthogonality across the analysis and synthesis 

filters [40], as opposed to within the analysis and synthesis 

filters, and hence the name “bi-orthogonal”. 

 

VI. CONCLUSION 

Two-channel filter banks, in general, are characterized by 

the type of errors they introduce into the signal and the 

properties that the filters provide. Reconstruction error is 

made up of three components, namely, ) aliasing 

distortion, 2) amplitude distortion, and 3) phase distortion. 

Aliasing (and imaging) distortion is represented by A(z), 

and amplitude and phase distortions are represented by 

T(z). Properties of filters that we are particularly interested 

in are 1) finite support (i.e. FIR) 2) orthogonality, and 3) 

linear phase. Ideally, all three properties need to be 

incorporated into the filters as they are considered 

important in audio coding, e.g. orthogonality ensures that 

quantization noise in different channels remain 

independent, linear phase provides constant group delay, 

and finite support leads to stable and simple 

implementations. But it has been found that only two out 

of the three properties can be satisfied simultaneously for 

any given twochannel PR filter bank. This limitation is 

illustrated in Figure 4.2 where different solutions to the 

two-channel PR filter bank are shown. Regions of 

solutions for the three properties are shown where we find 

regions that offer two out of the three properties, but none 

that offer all three, except at the center point where the 

three properties overlap  (i.e. Haar solution). 
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Figure 4.2: Two-channel PR filter bank solutions Venn 

diagram for 1) finite support, 2) orthogonality, and 3) 

linear phase (P(z) is rational and real) 
 

We can summarize the two-channel filter bank solutions 

described in this section according to Table 4.1. Table 4.1 

shows a convenient description of the four families of 

filters using the properties that revolve around PR. Note 

that, in  

 
 

addition to these properties, filter banks generally need to 

be designed to provide other important properties such as 

good stopband attenuation, sharp cut-off rate, low pass-

band and stop-band ripples, and short delay. Filter 

Distortions Competing Properties Family ALD AD PD 

FIR Orthogonal Linear Phase Johnston None Min. None 

Yes ? Yes Elliptic None None Min. No ? No Smith-

Barnwell None None None Yes Yes No Generalized QMF 

None None None Yes No Yes Table 4.1: Two-channel 

filter bank solutions described in terms of properties that 

revolve around PR It is interesting to note that during the 

development of two-channel (and the more general M-

channel) filter banks, the so called polyphase 

representation provided a considerable amount of 

simplification in theory, design, and implementation. The 

polyphase representation is essentially a regrouping of 

terms in the z-domain that allows an efficient 

representation of the filter bank according to analysis and 

synthesis polyphase matrices. Some important constraints 

such as AC, PR, and orthogonality can be rather 

conveniently expressed using these matrices. As a result, 

much of the filter bank theory discussed today is based on 

the polyphase representation. 
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