
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8341

Implementation of Ripple Carry and Carry Skip

Adders with Speed and Area Efficient

PUSHPALATHA CHOPPA
1
, B.N. SRINIVASA RAO

2

PG Scholar (VLSI Design), Department of ECE, Avanthi Institute of Engineering & Tech., Visakhapatnam,AP, India 1

Associate Professor, Department of ECE, Avanthi Institute of Engineering & Technology, Visakhapatnam, AP, India 2

Abstract: The binary adder is the critical element in most digital circuit designs including digital signal processors

(DSP) and microprocessor datapath units. As such, extensive research continues to be focused on improving the
powerdelay performance of the adder. In VLSI implementations, parallel-prefix adders are known to have the best

performance. Binary adders are one of the most essential logic elements within a digital system. In addition, binary

adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and memory

addressing. Therefore, binary addition is essential that any improvement in binary addition can result in a performance

boost for any computing system and, hence, help improve the performance of the entire system. Parallel-prefix adders

(also known as carry-tree adders) are known to have the best performance in VLSI designs. This paper investigates

three types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, and spanning tree adder) and compares them to

the simple Ripple Carry Adder (RCA) and Carry Skip Adder (CSA). In this project Xilinx-ISE tool is used for

simulation,logical verification, and further synthesizing.

Keywords: Include at least 4 keywords or phrases

I. INTRODUCTION

Binary adders are one of the most essential logic elements

within a digital system. In addition, binary adders are also

helpful in units other than Arithmetic Logic Units (ALU),

such as multipliers, dividers and memory addressing.

Therefore, binary addition is essential that any

improvement in binary addition can result in a

performance boost for any computing system and, hence,

help improve the performance of the entire system.
Binary adders are one of the most essential logic elements

within a digital system. In addition, binary adders are also

helpful in units other than Arithmetic Logic Units (ALU),

such as multipliers, dividers and memory addressing.

Therefore, binary addition is essential that any

improvement in binary addition can result in a

performance boost for any computing system and, hence,

help improve the performance of the entire system.

The major problem for binary addition is the carry chain.

As the width of the input operand increases, the length of

the carry chain increases. Figure 1.1 demonstrates an

example of an 8- bit binary add operation and how the
carry chain is affected. This example shows that the worst

case occurs when the carry travels the longest possible

path, from the least significant bit (LSB) to the most

significant bit (MSB).

 In order to improve the performance of carry-propagate

adders, it is possible to accelerate the carry chain, but not

eliminate it. Consequently, most digital designers often

resort to building faster adders when optimizing a

computer architecture, because they tend to set the critical

path for most computations.

The binary adder is the critical element in most digital
circuit designs including digital signal processors (DSP)

and microprocessor data path units. As such, extensive

research continues to be focused on improving the power

delay performance of the adder.

Fig.1. Binary Adder Example.

In VLSI implementations, parallel-prefix adders are

known to have the best performance. Reconfigurable logic

such as Field Programmable Gate Arrays (FPGAs) has

been gaining in popularity in recent years because it offers
improved performance in terms of speed and power over

DSP-based and microprocessor-based solutions for many

practical designs involving mobile DSP and

telecommunications applications and a significant

reduction in development time and cost over Application

Specific Integrated Circuit (ASIC) designs. The power

advantage is especially important with the growing

popularity of mobile and portable electronics, which make

extensive use of DSP functions. However, because of the

structure of the configurable logic and routing resources in

FPGAs, parallel-prefix adders will have a different
performance than VLSI implementations. In particular,

most modern FPGAs employ a fast-carry chain which

optimizes the carry path for the simple Ripple Carry Adder

(RCA). In this paper, the practical issues involved in

designing and implementing tree-based adders on FPGAs

are described. Several tree-based adder structures are

implemented and characterized on a FPGA and compared

with the Ripple Carry Adder (RCA) and the Carry Skip

Adder (CSA). Finally, some conclusions and suggestions

for improving FPGA designs to enable better tree-based

adder performance are given.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8342

The implementations that have been developed in this

dissertation help to improve the design of parallel- prefix

adders and their associated computing architectures. This

has the potential of impacting many application specific

and general purpose computer architectures.

Consequently, this work can impact the designs of many

computing systems, as well as impacting many areas of

engineers and science. In this paper, the practical issues

involved in designing and implementing tree-based adders

on FPGAs are described. Several tree-based adder
structures are implemented and characterized on a FPGA

and compared with the Ripple Carry Adder (RCA) and the

Carry Skip Adder (CSA). Finally, some conclusions and

suggestions for improving FPGA designs to enable better

tree-based adder performance are given.

II. FPGA IMPLEMENTATION AND DESIGN FLOW

FPGA contains a two dimensional arrays of logic blocks

and interconnections between logic blocks. Both the logic

blocks and interconnects are programmable. Logic blocks

are programmed to implement a desired function and the
interconnections are programmed using the switch boxes

to connect the logic blocks. To be more clear, if we want

to implement a complex design (CPU for instance), then

the design is divided into small sub functions and each sub

function is implemented using one logic block. Now, to

get our desired design (CPU), all the sub functions

implemented in logic blocks must be connected and this is

done by programming the internal structure of an FPGA

which is depicted in the following figure 1.2

Fig. 2: FPGA interconnections

FPGAs, alternative to the custom ICs, can be used to

implement an entire System On one Chip (SOC). The

main advantage of FPGA is ability to reprogram. User can

reprogram an FPGA to implement a design and this is

done after the FPGA is manufactured. This brings the

name “Field Programmable.” Custom ICs are expensive

and takes long time to design so they are useful when

produced in bulk amounts. But FPGAs are easy to

implement within a short time with the help of Computer

Aided Designing (CAD) tools (because there is no
physical layout process, no mask making, and no IC

manufacturing). Some disadvantages of FPGAs are, they

are slow compared to custom ICs as they can’t handle vary

complex designs and also they draw more power. Xilinx

logic block consists of one Look Up Table (LUT) and one

Flip-Flop. An LUT is used to implement number of

different functionality. The input lines to the logic block

go into the LUT and enable it. The output of the LUT

gives the result of the logic function that it implements and

the output of logic block is registered or unregistered

output from the LUT. SRAM is used to implement a

LUT.A k-input logic function is implemented using 2^k *

1 size SRAM. Number of different possible functions for k

input LUT is 2^2^k. Advantage of such an architecture is

that it supports implementation of so many logic functions,

however the disadvantage is unusually large number of
memory cells required to implement such a logic block in

case number of inputs is large.

A simplified version of design flow is given in the flowing

diagram as shown in fig.3.

Fig.3. FPGA Design Flow

There are different techniques for design entry. Schematic

based, Hardware Description Language and combination

of both etc. . Selection of a method depends on the design

and designer. If the designer wants to deal more with
Hardware, then Schematic entry is the better choice. When

the design is complex or the designer thinks the design in

an algorithmic way then HDL is the better choice.

Language based entry is faster but lag in performance and

density.HDLs represent a level of abstraction that can

isolate the designers from the details of the hardware

implementation. Schematic based entry gives designers

much more visibility into the hardware. It is the better

choice for those who are hardware oriented. Another

method but rarely used is state-machines. It is the better

choice for the designers who think the design as a series of

states. But the tools for state machine entry are limited. In
this documentation we are going to deal with the HDL

based design entry.

Fig.4. FPGA Synthesis

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8343

The process that translates VHDL/ Verilog code into a

device netlist format i.e. a complete circuit with logical

elements (gates flip flop, etc…) for the design. If the

design contains more than one sub designs, ex. to

implement a processor, we need a CPU as one design

element and RAM as another and so on, then the synthesis

process generates netlist for each design element

Synthesis process will check code syntax and analyze the

hierarchy of the design which ensures that the design is

optimized for the design architecture, the designer has
selected. The resulting netlist(s) is saved to an NGC

(Native Generic Circuit) file (for Xilinx® Synthesis

Technology (XST)).

III. EXISTING METHODS

Ripple-Carry Adders (RCA)

The simplest way of doing binary addition is to connect

the carry-out from the previous bit to the next bit's carry-

in. Each bit takes carry-in as one of the inputs and outputs

sum and carry-out bit and hence the name ripple-carry

adder. This type of adders is built by cascading 1-bit full
adders. A 4-bit ripple-carry adder is shown in Figure 2.3.

Each trapezoidal symbol represents a single-bit full adder.

At the top of the figure, the carry is rippled through the

adder from cin to cout.

It can be observed in Figure 3.1 that the critical path,

highlighted with a solid line, is from the least significant

bit (LSB) of the input (a0 or b0) to the most significant bit

(MSB) of sum (sn-1). The ripple carry adder is

constructed by cascading full adders (FA) blocks in

series. One full adder is responsible for the addition of

two binary digits at any stage of the ripple carry. The

carryout of one stage is fed directly to the carry-in of the next
stage.

Fig.5.Ripple-Carry Adder[13].

Assuming each simple gate, including AND, OR and XOR

gate has a delay of 2/\ and NOT gate has a delay of 1/\. All

the gates have an area of 1 unit. Using this analysis and
assuming that each add block is built with a 9-gate full

adder, the critical path is calculated as follows.

ai , bi  si = 10/\

ai , bi  ci+1 = 9/\

ci  si = 5/\

ci  ci+1 = 4/\

The critical path, or the worst delay is

trca = {9 + (n- 2) x 4 + 5}/\ = {f4n + 6}/\

As each bit takes 9 gates, the area is simply 9n for a n-bit

RCA.

Carry-Select Adders (CSEA)

Simple adders, like ripple-carry adders, are slow since the

carry has to to travel through every full adder block. There

is a way to improve the speed by duplicating the hardware

due to the fact that the carry can only be either 0 or 1. The

method is based on the conditional sum adder and

extended to a carry-select adder. With two RCA, each

computing the case of the one polarity of the carry-in, the

sum can be obtained with a 2x1 multiplexer with the

carry-in as the select signal. An example of 16-bit carry-
select adder is shown in Figure 3.2. In the figure, the adder

is grouped into four 4-bit blocks. The 1-bit multiplexors

for sum selection can be implemented as Figure 3.2 shows.

Assuming the two carry terms are utilized such that the

carry input is given as a constant 1 or 0:

Fig.6. Carry-Select Adder[13]

In Fig.6, each two adjacent 4-bit blocks utilizes a carry

relationship

ci+4 = c0 i+4 + c1 i+4 . ci

Temporary sums can be defined as follows.

s0 i+1 = ti+1 . c0 i

s1 i+1 = ti+1 . c1 i

The final sum is selected by carry-in between the

temporary sums already calculated.

si+1 = cj . s0 i+1 + cj . s1 i+1

Assuming the block size is fixed at r-bit, the n-bit adder is

composed of k groups of r-bit blocks, i.e. n = r x k.
The critical path with the first RCA has a delay of (4r +

5)/\ from the input to the carry-out, and there are k - 2

blocks that follow, each with a delay of 4/\ for carry to go

through. The final delay comes from the multiplexor,

which has a delay of 5/\, as indicated in Figure 2.5. The

total delay for this CSEA is calculated as

tcsea = 4r + 5 + 4(k - 2) + 5/\ = {4r + 4k + 2}/\

The area can be estimated with (2n - r) FAs, (n - r)

multiplexors and (k - 1) AND/OR logic. As mentioned

above, each FA has an area of 9 and a multiplexor takes 5

units of area. The total area can be estimated
9(2n - r) + 2(k - 1) + 4(n - r) = 22n - 13r + 2k - 2

The delay of the critical path in CSEA is reduced at the

cost of increased area. For example, in Figure 3.2, k = 4, r

= 4 and n = 16. The delay for the CSEA is 34/\ compared

to 70/\ for 16-bit RCA. The area for the CSEA is 310 units

while the RCA has an area of 144 units.

The delay of the CSEA is about the half of the RCA. But

the CSEA has an area more than twice that of the RCA.

Each adder can also be modified to have a variable block

sizes, which gives better delay and slightly less area.

Carry-Skip Adders (CSKA)

There is an alternative way of reducing the delay in the
carry-chain of a RCA by checking if a carry will propagate

through to the next block. This is called carry-skip adder

ci+1 = Pi:j _ Gi:j + Pi:j . cj

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8344

fig.7. Carry-Skip Adder[13]

The carry-out of each block is determined by selecting the

carry-in and Gi:j using Pi:j. When Pi:j = 1, the carry-in cj
is allowed to get through the block immediately.

Otherwise, the carry-out is determined by Gi:j. The CSKA

has less delay in the carry-chain with only a little

additional extra logic.

 Further improvement can be achieved generally by

making the central block sizes larger and the two-end

block sizes smaller.

Assuming the n-bit adder is divided evenly to k r-bit

blocks, part of the critical path is from the LSB input

through the MSB output of the final RCA.

The first delay is from the LSB input to carry-out, which is
4r + 5. Then, there are k - 2 skip logic blocks with a delay

of 3/\. Each skip logic block includes one 4-input AND

gate for getting Pi+3:i and one AND/OR logic.

The final RCA has a delay from input to sum at MSB,

which is 4r+6. The total delay is calculated as follows.

tcska = {4r + 5 + 3(k - 2) + 4r + 6}/\

 = {8r + 3k + 5}/\

The CSKA has n-bit FA and k - 2 skip logic blocks. Each

skip logic block has an area of 3 units. Therefore, the total

area is estimated as 9n + 3(k - 2) = 9n + 3k – 6.

IV. RESULTS

The results pertaining to the proposed work are given in
this section. Output representation regarding koggee stone

algorithm for 16 bit, 32 bit and 64 bit are presented in

Fig.8 through Fig.10.

 Results involving implementation of RCA 16 bit, RCA 32

bit and RCA 64 bit and Carry Skip for 16 bit, carry skip 32

bit and carry skip 64 are presented in the subsequent

figures.

Fig.8. Koggee stone 16 bit

Fig.9. Kogeee stone 32 bit

Fig.10.Kogeee stone 64 bit

Fig.11.Rca 16 bit adder

Fig.12.Rca 32 bit adder

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8345

Fig.12.Rca 64 bit adder

Fig.13.Carry skip 16 bit

Fig.14.Carry skip 32 bit:

Fig.14.Carry skip 64 bit

V. CONCLUSION

The results presented in the preceding section significantly

produced the efficiency of the proposed methodology. The

performance evaluation of the simulated models would be

good starting point of further research.

REFERENCES

[1] P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-Grained

Redundancy in Adders,” Int. Symp. on QualityElectronic Design,

pp. 317-321, March 2007.

[2] T. Lynch and E. E. Swartzlander, “A Spanning Tree Carry

Lookahead Adder,” IEEE Trans. on Computers, vol. 41, no. 8, pp.

931-939, Aug. 1992.

[3] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y. Zorian, “Easily

Testable Cellular Carry Lookahead Adders,” Journal of Electronic

Testing: Theory and Applications 19, 285-298, 2003.

[4] S. Xing and W. W. H. Yu, “FPGA Adders: Performance Evaluation

and Optimal Design,” IEEE Design & Test of Computers, vol. 15,

no. 1, pp. 24-29, Jan. 1998.

[5] M. Bečvář and P. Štukjunger, “Fixed-Point Arithmetic in FPGA,”

Acta Polytechnica, vol. 45, no. 2, pp. 67-72, 2005.

[6] N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th edition,

Pearson–Addison-Wesley, 2011.

[7] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,”

IEEE Trans. Comput., vol. C-31, pp. 260-264, 1982.

[8] D. Harris, “A Taxonomy of Parallel Prefix Networks,” in Proc. 37th

Asilomar Conf. Signals Systems and Computers, pp. 2213–7, 2003.

[9] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the

Efficient Solution of a General Class of Recurrence Equations,”

IEEE Trans. on Computers, Vol. C-22, No 8, August 1973

