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Abstract: The binary adder is the critical element in most digital circuit designs including digital signal processors 

(DSP) and microprocessor datapath units. As such, extensive research continues to be focused on improving the 
powerdelay performance of the adder. In VLSI implementations, parallel-prefix adders are known to have the best 

performance. Binary adders are one of the most essential logic elements within a digital system. In addition, binary 

adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and memory 

addressing. Therefore, binary addition is essential that any improvement in binary addition can result in a performance 

boost for any computing system and, hence, help improve the performance of the entire system. Parallel-prefix adders 

(also known as carry-tree adders) are known to have the best performance in VLSI designs. This paper investigates 

three types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, and spanning tree adder) and compares them to 

the simple Ripple Carry Adder (RCA) and Carry Skip Adder (CSA). In this project Xilinx-ISE tool is used for 

simulation,logical verification, and further synthesizing. 
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I. INTRODUCTION 

Binary adders are one of the most essential logic elements 

within a digital system. In addition, binary adders are also 

helpful in units other than Arithmetic Logic Units (ALU), 

such as multipliers, dividers and memory addressing. 

Therefore, binary addition is essential that any 

improvement in binary addition can result in a 

performance boost for any computing system and, hence, 

help improve the performance of the entire system.  
Binary adders are one of the most essential logic elements 

within a digital system. In addition, binary adders are also 

helpful in units other than Arithmetic Logic Units (ALU), 

such as multipliers, dividers and memory addressing. 

Therefore, binary addition is essential that any 

improvement in binary addition can result in a 

performance boost for any computing system and, hence, 

help improve the performance of the entire system.  

The major problem for binary addition is the carry chain. 

As the width of the input operand increases, the length of 

the carry chain increases. Figure 1.1 demonstrates an 

example of an 8- bit binary add operation and how the 
carry chain is affected. This example shows that the worst 

case occurs when the carry travels the longest possible 

path, from the least significant bit (LSB) to the most 

significant bit (MSB). 

 In order to improve the performance of carry-propagate 

adders, it is possible to accelerate the carry chain, but not 

eliminate it. Consequently, most digital designers often 

resort to building faster adders when optimizing a 

computer architecture, because they tend to set the critical 

path for most computations. 

The binary adder is the critical element in most digital 
circuit designs including digital signal processors (DSP) 

and microprocessor data path units. As such, extensive 

research continues to be focused on improving the power 

delay performance of the adder. 

 

 
 

Fig.1. Binary Adder Example. 
 

In VLSI implementations, parallel-prefix adders are 

known to have the best performance. Reconfigurable logic 

such as Field Programmable Gate Arrays (FPGAs) has 

been gaining in popularity in recent years because it offers 
improved performance in terms of speed and power over 

DSP-based and microprocessor-based solutions for many 

practical designs involving mobile DSP and 

telecommunications applications and a significant 

reduction in development time and cost over Application 

Specific Integrated Circuit (ASIC) designs. The power 

advantage is especially important with the growing 

popularity of mobile and portable electronics, which make 

extensive use of DSP functions. However, because of the 

structure of the configurable logic and routing resources in 

FPGAs, parallel-prefix adders will have a different 
performance than VLSI implementations. In particular, 

most modern FPGAs employ a fast-carry chain which 

optimizes the carry path for the simple Ripple Carry Adder 

(RCA). In this paper, the practical issues involved in 

designing and implementing tree-based adders on FPGAs 

are described. Several tree-based adder structures are 

implemented and characterized on a FPGA and compared 

with the Ripple Carry Adder (RCA) and the Carry Skip 

Adder (CSA). Finally, some conclusions and suggestions 

for improving FPGA designs to enable better tree-based 

adder performance are given.  
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The implementations that have been developed in this 

dissertation help to improve the design of parallel- prefix 

adders and their associated computing architectures. This 

has the potential of impacting many application specific 

and general purpose computer architectures. 

Consequently, this work can impact the designs of many 

computing systems, as well as impacting many areas of 

engineers and science. In this paper, the practical issues 

involved in designing and implementing tree-based adders 

on FPGAs are described. Several tree-based adder 
structures are implemented and characterized on a FPGA 

and compared with the Ripple Carry Adder (RCA) and the 

Carry Skip Adder (CSA). Finally, some conclusions and 

suggestions for improving FPGA designs to enable better 

tree-based adder performance are given. 

 

II. FPGA IMPLEMENTATION AND DESIGN FLOW 

FPGA contains a two dimensional arrays of logic blocks 

and interconnections between logic blocks. Both the logic 

blocks and interconnects are programmable. Logic blocks 

are programmed to implement a desired function and the 
interconnections are programmed using the switch boxes 

to connect the logic blocks. To be more clear, if we want 

to implement a complex design (CPU for instance), then 

the design is divided into small sub functions and each sub 

function is implemented using one logic block. Now, to 

get our desired design (CPU), all the sub functions 

implemented in logic blocks must be connected and this is 

done by programming the internal structure of an FPGA 

which is depicted in the following figure 1.2  

 
Fig. 2: FPGA interconnections 

 

FPGAs, alternative to the custom ICs, can be used to 

implement an entire System On one Chip (SOC). The 

main advantage of FPGA is ability to reprogram. User can 

reprogram an FPGA to implement a design and this is 

done after the FPGA is manufactured. This brings the 

name “Field Programmable.” Custom ICs are expensive 

and takes long time to design so they are useful when 

produced in bulk amounts. But FPGAs are easy to 

implement within a short time with the help of Computer 

Aided Designing (CAD) tools (because there is no 
physical layout process, no mask making, and no IC 

manufacturing). Some disadvantages of FPGAs are, they 

are slow compared to custom ICs as they can’t handle vary 

complex designs and also they draw more power. Xilinx 

logic block consists of one Look Up Table (LUT) and one 

Flip-Flop. An LUT is used to implement number of 

different functionality. The input lines to the logic block 

go into the LUT and enable it. The output of the LUT 

gives the result of the logic function that it implements and 

the output of logic block is registered or unregistered 

output from the LUT. SRAM is used to implement a 

LUT.A k-input logic function is implemented using 2^k * 

1 size SRAM. Number of different possible functions for k 

input LUT is 2^2^k. Advantage of such an architecture is 

that it supports implementation of so many logic functions, 

however the disadvantage is unusually large number of 
memory cells required to implement such a logic block in 

case number of inputs is large.  

A simplified version of design flow is given in the flowing 

diagram as shown in fig.3. 

 
Fig.3. FPGA Design Flow 

 

There are different techniques for design entry. Schematic 

based, Hardware Description Language and combination 

of both etc. . Selection of a method depends on the design 

and designer. If the designer wants to deal more with 
Hardware, then Schematic entry is the better choice. When 

the design is complex or the designer thinks the design in 

an algorithmic way then HDL is the better choice. 

Language based entry is faster but lag in performance and 

density.HDLs represent a level of abstraction that can 

isolate the designers from the details of the hardware 

implementation.  Schematic based entry gives designers 

much more visibility into the hardware. It is the better 

choice for those who are hardware oriented. Another 

method but rarely used is state-machines. It is the better 

choice for the designers who think the design as a series of 

states. But the tools for state machine entry are limited. In 
this documentation we are going to deal with the HDL 

based design entry. 

 
Fig.4. FPGA Synthesis 
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The process that translates VHDL/ Verilog code into a 

device netlist format i.e. a complete circuit with logical 

elements (gates flip flop, etc…) for the design. If the 

design contains more than one sub designs, ex. to 

implement a processor, we need a CPU as one design 

element and RAM as another and so on, then the synthesis 

process generates netlist for each design element 

Synthesis process will check code syntax and analyze the 

hierarchy of the design which ensures that the design is 

optimized for the design architecture, the designer has 
selected. The resulting netlist(s) is saved to an NGC 

(Native Generic Circuit) file (for Xilinx® Synthesis 

Technology (XST)). 

 

III. EXISTING METHODS 

Ripple-Carry Adders (RCA) 

The simplest way of doing binary addition is to connect 

the carry-out from the previous bit to the next bit's carry-

in. Each bit takes carry-in as one of the inputs and outputs 

sum and carry-out bit and hence the name ripple-carry 

adder. This type of adders is built by cascading 1-bit full 
adders. A 4-bit ripple-carry adder is shown in Figure 2.3. 

Each trapezoidal symbol represents a single-bit full adder. 

At the top of the figure, the carry is rippled through the 

adder from cin to cout. 

It can be observed in Figure 3.1 that the critical path, 

highlighted with a solid line, is from the least significant 

bit (LSB) of the input (a0 or b0) to the most significant bit 

(MSB) of sum (sn-1). The ripple carry adder is 

constructed by cascading full adders (FA) blocks in 

series. One full adder is responsible for the addition of 

two binary digits at any stage of the ripple carry. The 

carryout of one stage is fed directly to the carry-in of the next 
stage. 

 
Fig.5.Ripple-Carry Adder[13]. 

 

Assuming each simple gate, including AND, OR and XOR 

gate has a delay of 2/\ and NOT gate has a delay of 1/\. All 

the gates have an area of 1 unit. Using this analysis and 
assuming that each add block is built with a 9-gate full 

adder, the critical path is calculated as follows. 

ai , bi  si = 10/\ 

ai , bi  ci+1 = 9/\ 

ci  si = 5/\ 

ci  ci+1 = 4/\ 

The critical path, or the worst delay is 

trca  = {9 + (n- 2) x 4 + 5}/\ = {f4n + 6}/\ 

As each bit takes 9 gates, the area is simply 9n for a n-bit 

RCA. 

 

Carry-Select Adders (CSEA) 

Simple adders, like ripple-carry adders, are slow since the 

carry has to to travel through every full adder block. There 

is a way to improve the speed by duplicating the hardware 

due to the fact that the carry can only be either 0 or 1. The 

method is based on the conditional sum adder and 

extended to a carry-select adder. With two RCA, each 

computing the case of the one polarity of the carry-in, the 

sum can be obtained with a 2x1 multiplexer with the 

carry-in as the select signal. An example of 16-bit carry-
select adder is shown in Figure 3.2. In the figure, the adder 

is grouped into four 4-bit blocks. The 1-bit multiplexors 

for sum selection can be implemented as Figure 3.2 shows. 

Assuming the two carry terms are utilized such that the 

carry input is given as a constant 1 or 0: 

 
Fig.6. Carry-Select Adder[13] 

 

In Fig.6, each two adjacent 4-bit blocks utilizes a carry 

relationship 

ci+4 = c0 i+4 + c1 i+4 . ci 

Temporary sums can be defined as follows. 

s0 i+1 = ti+1 . c0 i 

s1 i+1 = ti+1 . c1 i 

The final sum is selected by carry-in between the 

temporary sums already calculated. 

si+1 = cj . s0 i+1 + cj . s1 i+1 

Assuming the block size is fixed at r-bit, the n-bit adder is 

composed of k groups of r-bit blocks, i.e. n = r x k.  
The critical path with the first RCA has a delay of (4r + 

5)/\ from the input to the carry-out, and there are k - 2 

blocks that follow, each with a delay of 4/\ for carry to go 

through. The final delay comes from the multiplexor, 

which has a delay of 5/\, as indicated in Figure 2.5. The 

total delay for this CSEA is calculated as 

tcsea = 4r + 5 + 4(k - 2) + 5/\ = {4r + 4k + 2}/\ 

The area can be estimated with (2n - r) FAs, (n - r) 

multiplexors and (k - 1) AND/OR logic. As mentioned 

above, each FA has an area of 9 and a multiplexor takes 5 

units of area. The total area can be estimated 
9(2n - r) + 2(k - 1) + 4(n - r) = 22n - 13r + 2k - 2 

The delay of the critical path in CSEA is reduced at the 

cost of increased area. For example, in Figure 3.2, k = 4, r 

= 4 and n = 16. The delay for the CSEA is 34/\ compared 

to 70/\ for 16-bit RCA. The area for the CSEA is 310 units 

while the RCA has an area of 144 units.  

The delay of the CSEA is about the half of the RCA. But 

the CSEA has an area more than twice that of the RCA. 

Each adder can also be modified to have a variable block 

sizes, which gives better delay and slightly less area. 

Carry-Skip Adders (CSKA) 

There is an alternative way of reducing the delay in the 
carry-chain of a RCA by checking if a carry will propagate 

through to the next block. This is called carry-skip adder 

ci+1 = Pi:j _ Gi:j + Pi:j . cj 



ISSN (Online) : 2278-1021 

ISSN (Print)    : 2319-5940 
 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 3, Issue 10, October 2014 

 

Copyright to IJARCCE                                                                                    www.ijarcce.com                                                                                             8344 

 
fig.7. Carry-Skip Adder[13] 

The carry-out of each block is determined by selecting the 

carry-in and Gi:j using Pi:j. When Pi:j = 1, the carry-in cj 
is allowed to get through the block immediately. 

Otherwise, the carry-out is determined by Gi:j. The CSKA 

has less delay in the carry-chain with only a little 

additional extra logic. 

 Further improvement can be achieved generally by 

making the central block sizes larger and the two-end 

block sizes smaller. 

Assuming the n-bit adder is divided evenly to k r-bit 

blocks, part of the critical path is from the LSB input 

through the MSB output of the final RCA.  

The first delay is from the LSB input to carry-out, which is 
4r + 5. Then, there are k - 2 skip logic blocks with a delay 

of 3/\. Each skip logic block includes one 4-input AND 

gate for getting Pi+3:i and one AND/OR logic.  

The final RCA has a delay from input to sum at MSB, 

which is 4r+6. The total delay is calculated as follows. 

tcska  = {4r + 5 + 3(k - 2) + 4r + 6}/\ 

 = {8r + 3k + 5}/\ 

The CSKA has n-bit FA and k - 2 skip logic blocks. Each 

skip logic block has an area of 3 units. Therefore, the total 

area is estimated as 9n + 3(k - 2) = 9n + 3k – 6. 

  

IV. RESULTS 
 

The results pertaining to the proposed work are given in 
this section. Output representation regarding koggee stone 

algorithm for 16 bit, 32 bit and 64 bit are presented in 

Fig.8 through Fig.10. 

 Results involving implementation of RCA 16 bit, RCA 32 

bit and RCA 64 bit and Carry Skip for 16 bit, carry skip 32 

bit and carry skip 64 are presented in the subsequent 

figures. 

 

 
 

Fig.8. Koggee stone 16 bit 

  

 

 
 

Fig.9. Kogeee stone 32 bit 

 

 
 

Fig.10.Kogeee stone 64 bit 

 

 
 

Fig.11.Rca 16 bit adder 

 

 
 

Fig.12.Rca 32 bit adder 
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Fig.12.Rca 64 bit adder 

 

 
 

Fig.13.Carry skip 16 bit 

 

 
 

Fig.14.Carry skip 32 bit: 

 

 
 

Fig.14.Carry skip 64 bit 

 

 

 

 

 

V. CONCLUSION 
 

The results presented in the preceding section significantly 

produced the efficiency of the proposed methodology. The 

performance  evaluation of the simulated models would be 

good starting point of further research.   
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