
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4224 110

An Enhanced Tool for Migration Testing of Web

Applications

S. Geetha
1
, Dr. S. Iyakutti

2

Research Scholar in Computer Science, Madurai Kamaraj University, Madurai, Tamil Nadu, India1

Professor, Dept. of Physics & Nanotechnology, SRM University, Chennai, Tamil Nadu, India2
Abstract: Software organizations often need to migrate applications from one platform or technology to another for a
variety of reasons. The software engineering research community is trying to find out techniques by which such

migration projects can be carried out efficiently. The present paper proposes a technique called e-Splitter, to address the

challenge of testing of migrated web application by enhancing an approach called Splitter. The paper attempts to draw

on the power of genetic algorithms in addressing complex problems. Through an empirical study, we show that e-

Splitter performs better than Splitter in testing of migrated web applications.

Keywords: Splitter, e-Splitter, Web Application migration, Testing

1. INTRODUCTION

The novel advancements in hardware and software

technologies necessitate organizations to resort to

migration of applications to exploit the advantages
presented by these advancements. The Software

Engineering research community is working hard to

discover techniques, tools and principles by which such

migration projects can be handled efficiently.

One of the challenges associated with migration projects is

testing. Testers need to ensure that the original and the

migrated applications produce the same results when

presented with test cases. The test case generation

becomes a baffling problem as testers are often uncertain

about the precise nature of inputs that would occur in the

production application. Migration projects are fraught with

problems like incorrect settings in configuration files,
incorrect security settings and a host of other issues that

need to be uncovered by the presented test cases.

2. BACKGROUND

Ding et al propose a tool called Splitter that can be used in

testing of migrated web applications [1]. The basic idea

behind Splitter is as follows: A Proxy is put in front of the

Web Server and this proxy intercepts HTTP requests and

forwards them to both the original and the migrated

applications. The outputs of the original and the migrated

applications are compared detecting a flaw when a

mismatch occurs. The obvious question that arises is the

likely impact on the production environment but Ding et al

prove that the overhead is within tolerable limits. The
basic architecture is diagrammed below. It is taken from

[1] and is presented here for clarity.

Figure 1 – Basic Architecture of Splitter (from [1])

The major components of Splitter are:

Proxy

 Ding et al use Squid [2] which is a commonly
used Web Proxy for replicating requests. The proxy

forwards incoming requests to the production application

without any delay and also sends the same to Session

Manager Component.

Session Manager

 HTTP requests often contain state information in

cookies and direct forwarding of these into the migrated

application will cause problems. The session manager

component takes care of this by substituting a cookie in

place of its occurrence. The session manager also

addresses the issues of dealing with URL parameters often

found with HTTP GET requests and HTTP POST
parameters.

Analysis Engine

 This component compares the responses from the

production and migrated applications and reports issues to

the test engineer. A major challenge on the comparison is

imposed by the presence of dynamic contents in the

response. If the response contains only static contents, the

responses form the production and migrated applications

will be the same. But in the presence of dynamic contents

like timestamps and advertisements, the production and

migrated application might yield different responses. To
differentiate between the case where the different

responses indicate an issue in the migrated application and

the case where different responses are solely due to the

presence of dynamic contents, Ding et al propose an

algorithm that uses heuristics. Simple text responses are

compared using the SES algorithm [3 Chawathe1996].

HTML responses are converted to DOM trees [4

Wood20000] and compared using heuristics like Structure

heuristic which captures the difference is the structure of

DOM trees with high importance given to nodes closer to

the root and the distribution heuristic which examines the

value distribution of leaf nodes. In the case of distribution
heuristic, KS Test [5 Young 77] is used to quantify the

differences. In order to avoid, too much attention being

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4224 111

given to little differences, Ding et al categorize related

problems into one group.

3. E-SPLITTER

 We propose some modifications in the Analysis

Engine component of splitter with the objective of
improving the accuracy of the performance of Splitter. The

task of the Analysis Engine is the complex of all the three

components. The analysis engine must be able to detect if

differences in responses of the production and migration

applications are different and if they are different decide

whether the difference is due to an issue in the migrated

application or acceptable difference due to presence of

dynamic contents. It must also be able to rank the

differences in the order of importance when presenting the

differences to the test engineer who can choose to ignore

or inspect the lower ranked differences. It must also
categorize related problems into one group.

 For all these tasks of the Analysis Engine, we

propose to use Genetic Algorithm as opposed to the

heuristic based algorithm used by Ding et al. Genetic

Algorithms mimic the natural process of evolution in

uncovering solutions to problems and have been applied

successfully in a variety of domains to solve complex

problems. Therefore, we examine if the power of GA can

be exploited to improve the performance of Splitter.

Applying GA

 The skeleton of the basic GA is shown below:

Initialize a population of solutions at random
Repeat

Evaluate fitness of each individual

Based on the fitness, select 2 solutions at random

Cross-over the selected solutions to generate an off-spring

solution

Mutate the Off-Spring Solution at random

Replace the less fit solutions with the newly generated off-

spring solutions

Until termination-criterion

 The Genetic Algorithm for our problem is

presented with 2 DOM trees representing HTML
responses form the production and migrated applications

and is expected to output the difference between the

documents. These differences may not be straight forward

differences in textual content. For applying GA, the choice

of the fitness function which represents the fitness of a

particular solution in solving the problem, is critical. The

fitness function for our case is obtained using the Linear

Discriminant Analysis and the leave-one-out method of

training and testing. In the leave-one-out method, the

system is trained with all but one pair of responses to be

compared and it is examined if the system is able to

predict the difference for the left out pair.
 Our proposed enhancement also uses GA to

cluster the erroneous responses found by the analysis

engine component, this is desirable as otherwise it is likely

that the test engineer will be flooded with a large number

of erroneous responses that need to be examined. In this

GA is provided with the erroneous responses uncovered

by the previous step as input and the GA outputs clusters

of responses where each cluster contains a group of related

erroneous responses, probably triggered by the same fault

in the migration application.

Figure 2 – Sketch of the Analysis Component enhanced with GA

4. EVALUATION OF E-SPLITTER

 To demonstrate the superiority in performance

achieved with s-Splitter we conducted an empirical study

with 3 moderately sized web sites which were migrated

recently by a local software organization. The web sites

were migrated from PHP to ASP.NET and the databases

were migrated from mySQL to SQL Server. We first used

Splitter to find out the number of erroneous responses
uncovered and then used e-Splitter. A manual inspection

was used to find out the exact number of erroneous

responses. Splitter was able to find out all the erroneous

differences but it reported a moderate number of false

positives, which were correct responses in actuality, but

reported by Splitter as erroneous.

We then used e-Splitter for the same purpose. E-Splitter

also was able to identify all the erroneous responses and

reported a smaller number of false-positives which

justified our assumption that GA is likely to be more

accurate in tackling the issue compared to the heuristic

based algorithm adopted by Ding et al.

Table 1: False Positives reported by Splitter and e-Splitter

Application False

Positives

reported by

Splitter

False

Positives

reported by

e-Splitter

A1 97 35

A2 134 89

A3 72 29

Figure 3 – Comparison of false positives reported by

Splitter and e-Splitter

0

20

40

60

80

100

120

140

160

A1 A2 A3

False Positives

reported by Splitter

False Positives

reported by e-

Splitter

Clusters

Genetic

Algorithm for

finding erroneous

responses based

on differences

between

production and

migration

applications

Genetic

Algorithm for
clustering of the

erroneous

responses

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4224 112

To evaluate the power of GA for clustering erroneous

responses we used the Cluster purity measure which is the

ratio of the responses within a cluster that were not due to

the same fault as the other responses in the cluster. Here

again, e-Splitter was able to arrive at more pure clusters

and in fact on an average, 92% of the clusters thus found,
contained erroneous responses triggered by the same fault

in the migrated application.

Table 2: Average Cluster Purity Splitter and e-Splitter

Application Average

Cluster

Purity of

Splitter

Average

Cluster Purity

of e-Splitter

A1 83% 90%

A2 88% 94%

A3 81% 92%

Figure 4 – Comparison of Cluster Purity of Splitter and e-Splitter

5. CONCLUSION AND FUTURE WORK

 There is an imperative necessity for tools that

support testing of migrated applications in the endeavor of

efficient handling of migration projects. The paper

presented an enhancement using GA to a tool called

Splitter that can be used for testing migrated web

applications. the enhanced tool christened e-Splitter was

able to uncover all the errors while at the same time

maintaining a lesser number of false positives in an

empirical study conducted with 3 web applications. e-

Splitter was also found to cluster the erroneous responses
more accurately than Splitter. This clustering can greatly

save the time and effort of the test engineer.

 As a part of future work, we plan to develop other

similar tools that can be used for testing non-web

applications as well. We also envision development of

tools that can greatly aid in the design and coding phase of

migration projects.

REFERENCES
[1] Ding, Xiaoning, H. Huang, Y. Ruan, A. Shaikh, B. Peterson, X.

Zhang, Splitter: A Proxy-Based Approach for Post-Migration

Testing of Web Applications,

[2] Squid Proxy Cache, http://www.squid-cache.org

[3] Chawathe, Sudarshan S, A. Rajaraman, H. Garcia-Molina, J. Widom,

Change Detection in hierarchically structured information,

SIGMOD, 1996.

[4] Wood, Lauren, V. Apparao, S. Byrne, M. Champion, S. Isaacs,

Document Object Model (DOM) Level 1 specification, Retreieved

from: http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/

[5] Young, Ian T, Proof without prejudice: use of the kolmogorov-

smirnov test for the analysis of histograms from flow systems and

other sources, The Journal of Histoichemistry and Cytochemistry, 1977.

[6] Benedikt, Michael , J. Freire, and P.Godefroid, VeriWeb:

Automatically testing dynamic Web sites, 2002.

70%

75%

80%

85%

90%

95%

A1 A2 A3

Average Cluster

Purity of

Splitter

Average Cluster

Purity of e-

Splitter

