
 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 4, June 2012

 Copyright to IJARCCE www.ijarcce.com 211

 CROME : Indexing The Partial Data Cubes
 K.DHANASREE

1
 , C.SHOBHA BINDU

2
,R.SATISH

3

 Associate professor,DRKIST
1
 ,Associate professor,JNTUA

2
,Assistant professor,DJRIET

3

ABSTRACT — In recent years multiple group -bys are computed using various OLAP applications. For the computation of group

bys most of the OLAP applications use cube operator. The cube operator computes group-bys on all possible combinations of list of

attributes. OLAP products typically run faster than other approaches, because its possible to index directly into the data cube structure

to collect subsets of data. However for large data sets with many dimensions OLAP solutions aren’t always effective. To make the user

queries faster, parts of the data cube are pre computed and the aggregates are presented in cuboids. When the cube dimensions are

more in number, it is difficult to search for the pre computed cuboids and there is a chance of pre computing the same cuboid

redundantly. As pre computing cuboids requires much of storage space , even redundant evaluation of data cuboids is wastage of

memory. This also increases the cost of evaluation and performance time. So a better indexing is needed on what cuboids are pre

computed. Here we present a CROME based method of indexing ,that indexes the pre computed partial cuboids. The Crome based

method calculates Crome values to index the pre computed cubes, in order to avoid redundant evaluation of the pre computed cuboids.

If the user query Crome does not exist in the crome data structure then that cuboid can be pre computed.

Keyword: olap,cube,lattice,crome,D-sequence, ordered maximal group.

I. INTRODUCTION

 With years of research and development of data

warehouses and technology, a large number of data

warehouses have been successfully constructed and deployed

in applications, and data cube has become an essential

component in most data ware house systems and in some

extended relational database systems. Since we are required to

retrieve large number of records from different data bases we

are at an urge to summarize them on multi dimensions. This

multidimensional nature of data has led to OLAP

applications.. Many of the modern business problems can be

solved by these OLAP applications. Recently introduced data

cube operator is supporting such aggregates in OLAP data

bases. The pre computation of all or part of data cube can

greatly reduce the response time and enhance the performance

of online analytical processing . pre computation of the data

cube is therefore necessary. The OLAP[1] cubes are used to

summarize data by pre computations. Data cube computation

and representation approaches were classified into two main

categories: (i) full cube computation and (ii) partial cube

computation and representation. The Full cube computation

approach computes all the cells, for a given data cube, while

the partial cube computation approach computes a subset of a

cube cells(cuboids) for the given set of dimensions, or a

smaller range of possible values for some of the dimensions.

 The pre computation of the different summary views

(group-bys) of a data cube is critical to improve the response

time of data cube queries for On-Line Analytical Processing

(OLAP). Many solutions have been proposed for generating

the entire data cube. A data cube consists of two kinds of

attributes : measures and dimensions. The dimensions consists

of attributes like sales, city, time period etc. The measures are

numeric counts like profit, total of sales etc. The pre

computation of all or part of data cube can greatly reduce the

response time and enhance the performance of online

analytical processing. To support this goal of an OLAP

application the most efficient ways are pre compute all cells

in the cube, or pre compute no cells , or pre compute some of

the cells. If the whole cube is pre computed then the query

response time is faster. But the disadvantage is pre

computation requires lot of memory. We can pre compute

none of the cells in order to minimize memory requirements.

The disadvantage is user query response time is slow. With

these two disadvantages we pre compute the few cells. When

few cells are pre computed and presented it is better to index

which cells are pre computed , in order to increase the

efficiency of query response time.

 In this paper we present a CROME based indexing method

to index the pre computed cells. The method uses two

algorithms : 1. Algorithm to calculate D-sequence 2.

Algorithm to generate ordered maximal groups. . While

maintaining the datawarehouse the warehouse admin pre

computes few cells of the data cube. The ware house admin

calculates the D-sequences and Crome values for each of the

possible group bys on the dimensions of the ware house cube.

.These Crome values are indexed using any of the data

structures . Now when the user queries for the aggregates on

the dimensions, using the cube operator, the algorithms

discussed in this paper extracts the dimensions from the user

query , calculates the D-sequence and generates the ordered

maximal groups . we then find Crome values for the user

query .using these Crome values we search the already

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 4, June 2012

 Copyright to IJARCCE www.ijarcce.com 212

indexed Crome values by the admin. If the Crome value exist

the aggregates can be retrieved. If the Crome values doesn’t

exit then that cell of the cube is not pre computed and a

request can be put to the admin to pre compute the required

cell. There by indexing the pre computed cubes eliminates the

redundant computation of the cube cells.

 We have discussed about the basic data cube ,

its representation and its lattice form in Section II. We have

discussed about our crome based indexing approach in

Section III. Section III also emphases on the D-Sequence

generation algorithm and on ordered maximal group

generation algorithm.

 II. DATA CUBE

 To retrieve and support decision queries effectively, a

new operator, CUBE BY, was proposed [2]. The cube

operator is a multidimensional extension of the relational

operator GROUP BY. The CUBE BY operator computes

group bys corresponding to all possible combinations of

grouping attributes in the CUBE BY clause. A cell (cuboids)

of a cube is one group by. As the cube by attributes increases

cube operator becomes more expensive and the size of the data

cube increases.. The huge size of a data cube makes data cube

computation time-consuming [3]. Much of research work is

done on the size of data cube and several methods have been

introduced to reduce the size of a data cube and hence its

computation time and storage overhead are reduced.

Condensed cube, Dwarf , Quotient cube and indexing using

QC-trees[4] are some approaches. The basic idea of all these

methods is to compute the whole cube using optimized

memory. Many indexing techniques are been proposed to

index the data cube. Indexing techniques like sort based and

hash based are efficient only for smaller dimensions.

In SQL the collection of aggregate queries can be expressed

using the cube operator as follows

 Select A, B, C sum(s)

 Cube by A, B, C;

This query will result in the computation of 8 Group-bys:

ABC, AB, BC, AC, A, B, C and ALL. ALL is the aggregate of

all attributes, as shown in Fig.1 and executes them separately.

 ALL

 B C

 A

 BC

 AB AC

 ABC

Fig .1 : Cube by A,B,C.

 A lattice framework to represent the hierarchy of the

group-bys was introduced in [5]. This is an elegant model for

representing the dependencies in the calculations and also to

model costs of the aggregate calculations. A scheduling

algorithm can be applied to this framework substituting the

appropriate costs of computation and communication. A
lattice for the group-by calculations for a four dimensional

cube is shown in Fig. 2. Each node represents an aggregate

and an arrow represents a possible aggregate calculation which

is also used to represent the cost of the calculation. Calculation

of the order in which the GROUP-BYs are created depends on

the cost of deriving a lower order (one with a lower number of

attributes) group-by from a higher order (also called the

parent) group-by.

 ALL

 A B C D

 AB AC AD BC BD CD

 ABC ABD BCD ACD

 ABCD

 Fig. 2 : Lattice of possible group bys

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 4, June 2012

 Copyright to IJARCCE www.ijarcce.com 213

When the OLAP application with the cube operator in

implemented based on cube attributes the aggregations are

retrieved from the already pre computed aggregates. Many of

the OLAP applications provide a way to pre compute the

entire cube [6] or pre compute a part of the cube [7]. In order

to retrieve these pre computed cells efficiently a better

indexing is necessary. Indexing on the pre computed cells

enhances the query performance.

 III. CROME BASED METHOD

A data cube with 4 attributes A, B, C, D have 16 possible

combinations of group bys as shown in Fig.2.

ABCD, ABC, ABD, BCD, ACD, AB, AC,AD,

BC,BD,CD,A,B, C, D, and ALL.

Definition :1 (Ordered Maximal group) : The combinations

consisting of maximum attributes at each level in an

alphabetical ordered combination.

Definition:2 (Crome codes) : Crome codes are binary

equivalents of ordered numeric values of ordered maximal

groups.

We built Crome codes for each group by combination as

shown in Table 1

 TABLE 1: Crome codes

Ordered maximal

Group

Number

equivalents

Binary

 equivalents

ABCD

ABC

ABD

ACD

BCD

AB

AC

AD

BC

BD

CD

A

B

C

D

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0000

 0001

 0010

 0011

 0100

 0101

 0110

 0111

 1000

 1001

 1010

 1011

 1100

 1101

 1110

ALL

 15 1111

 For an SQL cube query

 Select A, B, C, sum(s)

 from sales

 cube by A,B,C;

We take the base node as the ordered maximal group in the

cube by condition. In the above SQL query base node is ABC

with n=3 attributes.

 Definition : 3 (Crome ID) : we define Crome ID of a node as

a number given to the node such that, no two adjacent nodes

with common n-1 base node attributes should be given the

same ID.

Definition : 4 (Crome Cube): The cube in which the possible

group bys are given crome ids.

Definition : 5 (Minimal Crome Cube): Minimal Crome cube

is the Crome cube which uses Minimal Crome IDs.

For the above SQL query the Minimal Crome Cube is

 1 ALL

 0 A C 0

 0 B

 1 AC

 1 AB BC 1

0 ABC(base node)

 Fig. 3: Minimal Crome Cube

Definition : 5 (D-Sequence of Minimal Crome Cube): D-

sequence is sequence of Crome IDs at each levels of

ordered maximal groups starting from the base node.

For the minimal Crome cube of Fig. 3 the D-Sequence is

 D - Sequence = (0, 1, 1, 1, 0, 0, 0, 1).

A . Crome Values

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 4, June 2012

 Copyright to IJARCCE www.ijarcce.com 214

 The Crome Values are taken as D-sequence together with

the ordered maximal groups binary equivalents. For the cube

shown in Fig.1 the Crome Values are

Crome value of Cube (ABC,AB ,AC, BC,A,B,C,ALL)

 = (0001, 0101, 0110, 1000,1100,1101,1110)

 + (0,111,0,0,0,1)

B . Indexing using Crome Values

 Let us suppose that we are maintaining a data cube

whose partial cubes are calculated on dimensions ABCD.

Then there are 16 possible group bys-

ABCD,ABC,ABD,ACD,BCD,AB,AC,AD,BC,BD,CD,A,B,C,

D,ALL.

For each group by the data base admin calculates the D-

sequences as given by definition 5.

These D-sequences are stored in a structure as shown Table 2

 TABLE 2: D-Sequences

Possible group by D-Sequence

ABCD

ABC

ABD

AB

BC

A

(0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0)

(0,1,1,1,0,0,0,1)

(0,1,1,1,0,0,0,1)

(0,1,1,0)

(0,1,1,0)

(0,1)

The Crome values for each possible group by is tabulated as

shown in Table 3

 TABLE 3: Crome values

Possible group by Crome values

ABCD

ABC

(0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0)

+ ordered maximal binary

equivalents of ABCD

(0,1,1,1,1,0)+ ordered

maximal binary equivalents of

ABC

Now when the user queries

 Select A, B, C sum(s) from sales

 Cube by A, B, C;

The user system calculates the Crome values of ABC from the

query using the algorithms discussed in section C and section

D

 C . Algorithm to calculate D-Sequence

Now when the user queries

 Select A, B, C sum(s) from sales

 Cube by A, B, C;

The D-sequence and ordered maximal group for the above

query is calculated as follows:

The above query has 3 dimensions.

We implement the D-Sequence algorithm to generate the D-

sequence.

Algorithm D-Sequence:

 Step 1 : Take number of dimensions.

Step 2 : Generate N+1 levels

Step 3 : Generate ncn 0’s at N+1 th level.

Step 4 : Generate ncn-1 1’s at N th level

Step 5 : Generate ncn-2 0’s at N-1 th level.

Step 6 : Generate nc1 0’s at last level.

Step 7 : Generate the D-sequence by combining

 the number of 0’s and 1’s at each level

 with 2
n
 entries in the sequence.

For dimensions A,B,C our algorithm generates D-sequence as

follows:

Number of dimensions : 3

Number of levels : 3+1 = 4

Level 4 : generate 3c3 0’s : 0

Level 3 : generate 3c2 1’s : 1,1,1

Level 2 : generate 3c1 0’s : 0,0,0

Level 1 : generate 3c1 1’s : 1

Combining all the entries of each level to get the D-sequence-

 D-sequence- (0,1,1,1,0,0,0,1)

 D . Algorithm to generate ordered maximal groups:

Step 1 : get dimensions from the query.

Step 2 : find number of dimensions, N.

Step 3 : set R=N

Step 4 : generate NcR maximal group combinations

 whose length is N and sort the combinations

step 5 : R=R-1;

step 6 : repeat steps 4 and 5 until R=N-R.

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 4, June 2012

 Copyright to IJARCCE www.ijarcce.com 215

For the above query the algorithm to generate ordered

maximal group works as follows :

Step 1 : get dimensions ABC

Step 2 : number of dimensions 3

Step 3 : r= 3

Step 4 : generate 3c3=1 ordered maximal group which

 can be either ABC or BCA or ACB. Sorting the

 group results in ABC.

Step 5 : R=R-1; R=2

 Step 6 : repeating step 4, for R=2

 We get the next ordered maximal groups as

 AB,AC, BC, A, B, C.

All these ordered maximal groups are given number

equivalent and tabulated as shown in Table 4

 TABLE 4 : Number equivalents

Ordered maximal

Group

Number equivalent

ABC

AB

AC

BC

A

B

C

ALL

 0

 1

 2

 3

 4

 5

 6

 7

The binary equivalents for the numbers are tabulated as shown

Table 5

 TABLE 5 : Binary equivalents

Ordered maximal

groups

Number

equivalents

Binary equivalents

ABC

AB

AC

BC

A

B

C

ALL

 0

 1

 2

 3

 4

 5

 6

 7

 0000

 0001

 0010

 0011

 0100

 0101

 0110

 1111

Now the user system calculates the Crome value using

calculated D-sequence and ordered maximal group bys. The

user module then sends these Crome values to the admin

module. The admin module checks these Crome value in its

index structure. If the Crome value exists then the user

requested data cube exists pre computed in the database and

is retrieved to the user. If the Crome value doesnt exist then

the admin module pre computes the data cube and stores in

its data base. The Crome based indexing thus avoids the

redundant pre computation of data cubes.

 IV. IMPLEMENTATION AND RESULTS

 To test how well our method performs, we implemented

the two algorithms using C.. We constructed two separate data

bases with common sales table cube. The values for each

attribute is independently chosen and the tuple size taken is

24 bytes. We have noticed that when compared to B ,B+

indexing methods , Crome based method reduced the cost of

calculation of redundant cubes and increased the query

performance. Our indexing method is easy and convenient.

We varied the dimensions of the cube from 0-25 in steps of 5

and measured the performance ratio.Normal methods could

reduce a 10% cost when compared to Crome based which has

reduced the cost of evaluating the redundant cubes upto 30% .

Search time has reduced more than 30% when compared to

other indexing techniques.

0

5

10

15

20

25

1
0

%

2
0

%

3
0

%

4
0

%

performance ratio

d
im

en
si

o
n

s normal

indexing

crome

indexing

 Fig. 4 : Performance comparison of crome indexing

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 4, June 2012

 Copyright to IJARCCE www.ijarcce.com 216

 V . CONCLUSION

 The task of all OLAP or multidimensional data

analysis applications is the ability to simultaneously aggregate

across many sets of dimensions. Computing multidimensional

aggregates is a performance bottleneck for these applications.

The cube operator requires computing group bys on all

possible combinations of attributes. We showed a Crome

based indexing method to index the pre computed cubes

.The approach has provided an indexing to increase the user

query performance and eliminated the redundant evaluation

cost of the data cells and showed a better performance.

REFERENCES :

[1] Goil S. and Choudhary A., “Parallel Data Cube

 Construction for High Performance On-Line Analytical

 Processing”, Proc. 4th Intl. Conf. on High Performance

 Computing, Bangalore, India, 1997.

[2] Harinarayan V., Rajaraman A. and Ullman

 J.D.“Implementing Data Cubes Efficiently”,

 Proc.SIGMOD’96.

[3] Sarawagi S., Agrawal R., and Gupta A., “On

 Computing the Data Cube”, Research Report 10026,

 IBM Almaden Research Center, San Jose, California,

 1996.

[4] H. Gupta et al” Index selection for OLAP”,proc.of

 the 13th ICDE, 1997.

[5] Sarawagi.S, Agrawal.R.,and Gupta.A.,“On compu-

 ting the Data Cube”,Research Report 10026,IBM

 Almaden Research Center, San Jose,California,1996

[6] A. Shukla, P. Deshpande, and J. Naughton”Material-

 ized view selection for multidimensional datasets”.

 In Proceedings of the 24th International,VLDB

 Conference,1998.

[7] K. Ross and K. Zaman. Optimizing selections over

 data cubes. Technical Report CUCS-011-98,Dept

 of Computer Science, Columbia university,1997.

