Accurate Software Size Estimation Using the Updated Function Point Analysis Model

Vikas Kumar¹, Sweta Pandey²
Computer Science and Application, Thapar University, Patiala, India¹
Information Technology, Banasthali University, Jaipur, India²

Abstract: In this paper; a new Function Point Analysis model has been proposed. In this proposed model, a new general system characteristic is added. The expert user programming also affects the size of software. By including it in the list of general system characteristics, it creates a provision for taking end user facilities into account, while estimating the size of a project. It is clear that proposed FPA provides more accurate size estimates and it will narrow the gap between size estimated and actual size. This will result in more accurate effort and cost estimates, which ultimately results in increased productivity and proper staffing, planning and scheduling.

Keywords: FPA, cost estimation, effort, size of project

I. INTRODUCTION

This document describes the Function point analysis which measures software by quantifying the functionality the software provides to the user based primarily on logical design. Here in this Function Point Analysis model has been proposed which creates a provision for taking end user facilities into account, while estimating the size of a project. This paper comprises of four sections including the present one which describes the goal of this paper. Section II shows research based papers which illustrates related work in function point analysis. Section III gives a brief introduction regarding proposed model and experimental result. And at last section IV describe the conclusion and references.

II. Related Work

Albrecht et al. [1] describes Function Point Analysis (FPA) method as an alternative to code-based sizing methods. Gaffney et al. [2] illustrate international Function Point Users Group (IFPUG), a non-profit organization, which was later established to maintain and promote the practice.

IFPUG [3] [4] describes extended and also published several versions of the FPA Counting Practices Manual to standardize the application of FPA.

Symons et al. [5] describe other significant extensions to the FPA method have been introduced and widely applied in practice, such as Mark II FPA and COSMIC-FFP.

Abran et al. [6] illustrate COSMIC-FFP which is also a extension to the FPA.

III. PROPOSED ENHANCEMENT IN FPA

The standard equation for estimation

- \(FP = UFP * VAF \)
- Where \(UFP = \text{Unadjusted Function Point} \) and

- Data Functionality
 1. Internal Logical Files (ILF)
 2. External Interface Files (EIF)

- Transaction Functionality
 1. External Inputs (EI)
 2. External Outputs (EO)
 3. External Queries (EQ)

Boehm et al. [8] illustrate these characteristics which contribute to Value Adjusted Factor (VAF). The final function point count is obtained by multiplying the VAF times the Unadjusted Function Point (UAF).

Symons et al. [9] describes 14 GSC’s these are as follows: Data communication, Distributed functions, performance, heavily used configuration, transaction rate, online data entry, End user efficiency, Online Update, complex processing, reusability, installation ease, multiple sites, facilitate change.
VAF = Value Adjusted Factor As mentioned, the total number of UAF is accumulated from five components.

The simplified equation is as follows:

\[UFP = EI + EO + EQ + ILF + EIF \]

The weights are assigned to each component based on transactional and data function types. For VAF, it is calculated from the summation of 14 GSCs as in:

\[VAF = 0.65 + \frac{TDI}{100} \]

The degree of influence of above 15 items will be computed as follows:

<table>
<thead>
<tr>
<th>S No</th>
<th>Expert User Facility in the Software</th>
<th>Degree of Influence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>1 < S No < 3</td>
<td>1</td>
<td>1< S No< 3</td>
</tr>
<tr>
<td>2</td>
<td>4 < S No < 6</td>
<td>2</td>
<td>4< S No< 6</td>
</tr>
<tr>
<td>3</td>
<td>7 < S No < 9</td>
<td>3</td>
<td>7< S No< 9</td>
</tr>
<tr>
<td>4</td>
<td>10 < S No < 12</td>
<td>4</td>
<td>10< S No< 12</td>
</tr>
<tr>
<td>5</td>
<td>13 < S No < 15</td>
<td>5</td>
<td>13< S No< 15</td>
</tr>
</tbody>
</table>

Experimental Results:
Consider the following inputs:
3. Internal Logical Files (ILF) - 02 and weight low = 7
4. External Interface Files (EIF) - 02 and weight avg = 7
5. External Inputs (EI) - 03 and weight high = 6
6. External Outputs (EO) - 03 and weight low = 4
7. External Queries (EQ) - 04 and weight avg = 4

TDI = 42 & New TDI = 45
Then
FPA

\[UFP = 2*7 + 2*7 + 3*6 + 3*4 + 4*4 = 74 \]
\[VAF = 0.65 + \frac{TDI}{100} = 0.65 + \frac{42}{100} = 1.07 \]
\[FP = UFP * VAF = 74 * 1.07 = 79.18 \]

Proposed FPA

\[UFP = 2*7 + 2*7 + 3*6 + 3*4 + 4*4 = 74 \]
\[VAF = 0.65 + \text{New TDI}/100 = 0.65 + \frac{45}{100} = 1.10 \]
\[\text{New FP} = UFP * \text{VAF} = 74 * 1.10 = 81.40 \]
IV CONCLUSION

From above results, it is clear that proposed FPA provides more accurate size estimates. It will narrow the gap between size estimated and actual size. This will result in more accurate effort and cost estimates. This ultimately results in increased productivity and proper staffing, planning and scheduling.

REFERENCES

