
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1554

Task Allocation for Maximizing Reliability of

Distributed Computing Systems using Dynamic

Greedy Heuristic

Rajesh D. Bharati
1
, Vilas N. Jagtap

2
, Omsagar C. Gupta

3
, Shivanand S. Landge

4

Assistant Professor, rdbharati@gmail.com, Department of Computer Engineering, DYPIET, Pune, India
1

Student, vilasjagtap123@gmail.com, Department of Computer Engineering, DYPIET, Pune, India
 2

Student, omsagargupta090@gmail.com, Department of Computer Engineering, DYPIET, Pune, India
 3

Student, shivanandlandge@gmail.com, Department of Computer Engineering, DYPIET, Pune, India
 4

Abstract: This paper deals with the problem of task allocation (i.e., to which processor should each task of an

application be assigned) in heterogeneous distributed computing systems with the goal of maximizing the system

reliability. The task assignment problem for more than three processors is known to be NP-hard, and therefore

satisfactory suboptimal solutions obtainable in an acceptable amount of time are generally sought. We propose a new

intelligent technique based on dynamic task allocation which uses greedy search algorithm for this problem.

Performance of the algorithm depends on number of tasks, number of processors, the ratio of average communication

time to average computation time and task interaction density of application. The effectiveness and efficiency of our

algorithm is compared with recently proposed task allocation algorithms for maximizing system reliability available in

literature.

Keywords: Task assignment, Distributed computing, Reliability, Dynamic Greedy heuristic, Task interaction graph.

I. INTRODUCTION

Distributed computing (DC) systems have been widely

deployed for executing computationally intensive

applications with diverse computing requirements. A DC

system generally consists of a suite of geographically

distributed dissimilar processors interconnected via

communication networks. In such a system, a parallel

application can be decomposed into a number of

cooperating tasks that are distributed to the various

processors for execution. In reality, however, the

performance of a parallel application running on a DC

system heavily depends on the mapping of tasks

partitioned from the application onto the available

processors in the system, referred to as the task assignment

problem which, if not properly handled, can nullify the

benefits of DC systems.

Task assignment can be performed statically or

dynamically [1]. Static task assignments take place during

compile time before running the application and remain

unchanged until the end of the execution. In contrast,

dynamic task assignments are performed at run time. Since

static mapping does not incur overheads on the execution

time of the mapped application, more complex mapping

algorithms than the dynamic ones can be adopted.

When all information needed for the assignment, such

as the structure of the parallel application, the execution

costs of tasks, the amount of data to be transferred among

tasks, the computing nodes and the communication

network, is known before the application execution, static

mapping can be exploited. In the general form of static

mapping, a parallel application is modeled using a task

interaction graph (TIG). In the TIG model, the vertices

represent application tasks and the edges represent inter-

task communications. There are no precedence relations

between tasks. A task incurs an execution cost that may

vary from one processor to another, and two interacting

tasks that are not assigned to the same processor incur a

communication cost. Certain resource constraints, such as

memory and processing load constraints, may be present at

each processor. The goal of the task assignment is to

minimize the sum of the total execution and

communication costs by appropriately allocating the tasks

to the processors without violating any of the constraints.

Due to its key importance on performance, the task

assignment problem has been extensively studied and

numerous methods have been reported in the literature.

These allocation schemes can be classified into two

categories. First, there are the exact methods that try to

find the optimal allocation for the given objective. The

existing approaches are developed using different

strategies such as graph theoretic techniques [2], integer

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1555

programming [3], and state space search [4, 5, 6].

However, as the problem is NP-hard for more than three

processors [4], these methods are limited by the amount of

time and memory needed to obtain an optimal solution

since they grow as exponential function of the problem

order. On the other hand, heuristic algorithms provide fast

and effective means for obtaining suboptimal solutions.

These techniques require less computation time than exact

methods. They are useful in applications where an optimal

solution is not obtainable within a critical time limit. They

are also applicable to large-size problems. Therefore,

development of effective heuristic procedures is gaining

importance among researchers. Different algorithms are

used for developing heuristic methods such as genetic

algorithm (GA) [7, 8], simulated annealing (SA) [9],

hybrid particle swarm optimization (HPSO) [10], harmony

search (HS) [11] and honey bee mating optimization

(HBMO) [20].

Because of the intractable nature of the task assignment

problem, new efficient techniques are always desirable to

obtain the best-possible solution within a reasonable

amount of computation time. The Dynamic greedy (DG)

heuristic is an effective stochastic local search algorithm

recently developed for combinatorial optimization

problems which has exhibited state-of-the-art

performances for several problems from computer science

and engineering, such as set covering problems [12, 13],

flow shop scheduling problems [14, 15], Sequencing

single-machine tardiness problems [16], multi objective

optimization problem [17], just to name a few. Thus, we

intend to further extend the application of DG to the task

assignment problem in the distributed computing systems.

To the best of our knowledge, this study is the first to

pioneer the use of DG heuristic for the problem

considered.

The remainder of this paper is organized as follows.

After formulating the problem in Section 2, the proposed

DG heuristic is elaborated in Section 3. Finally, some

concluding remarks are made in Section 4.

II. PROBLEM FORMULATION

The general problem of optimally mapping

independent tasks to machines in a DC suite has been

shown to be (weakly) NP-complete. To address this

problem, a number of heuristics have been proposed and

can be categorized into fast and slow algorithms according

to the time it takes to obtain the sub-optimal solution. Slow

heuristics, such as by ant optimization and by genetic

algorithm, take a significantly longer time than fast

heuristics, however, they aim to find better solutions.

In [18] eleven heuristics are compared and it is

concluded that the greedy heuristic min–min performs well

in comparison to the other techniques. Paper [19] reports

that the technique of ant optimization outperforms min–

min and genetic algorithm at the expense of a much longer

mapping process. However, only fast DG heuristics can be

adopted in the following situations, where the mapping

process is performed during the execution of the mapped

tasks.

There exists a large body of the literature covering

many task and heterogeneous computing models. In this

paper, we consider the task assignment problem with the

following characteristics.

A distributed application is characterized by a task

interaction graph (TIG)G(V, E), where V is a set of N

nodes indicating the N tasks of the application, and E is a

set of edges specifying the communication requirements

among these tasks. A weight cij associated with the edge

between tasks i and j represents the amount of data to be

transferred between the two tasks. The processors in the

system are heterogeneous. Hence, a task will incur

different execution costs if it is executed on different

processors. Let K be the number of processors in the DC

systems and EEC = {xik}N*K be the estimated execution

cost matrix where xik denotes the execution cost of task i

on processor k. On the other hand, all of the

communication channels are assumed to be non-uniform.

That is, an identical amount of data, if transmitted through

different communication channels, will incur different

communication costs. Define dkl as distance-related

communication cost associated with one unit of data

transferred from processor k to processor l, such that if

tasks i and j are executed on processors k and l

respectively, then a communication cost of cijdkl is

incurred. The distance metric is symmetric, i.e., dkl = dlk.

Furthermore, we assume that no communication cost is

incurred if two interacting tasks are assigned to the same

processors.

The allocation constraints depend on the characteristics

of both the application involved (resource requirements by

the tasks) and on the available resource capacities of the

processors in the system. To describe the allocation

constraints, let ri denote the resource requirement of task i

and let Rp denote the available resource capacity of

processor p.

 A particular task assignment can be represented by an

integer vector ψ of size N which is a mapping from the set

of tasks to the set of processors. It contains the indices of

the processors to which each task is allocated, i.e. ψ[i] = k,

if task i is allocated to processor k.

Let Ω be the set of all mappings from the set of tasks to

the set of processors. Our objective is to minimize the total

execution and communication costs incurred by the task

assignment subject to the resource constraint. Hence, the

considered task assignment problem can be formulated as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 𝛹

= 𝑋𝑖𝜑 𝑖

𝑁

𝑖=1

+ 𝑐𝑖𝑗 𝑑𝜑 𝑖 𝜑 𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 for all ψ ϵΩ (1)

s.t. 𝑟𝑖𝑖:𝜓 [𝑖] ≤ 𝑅𝐾 k=1, 2,…., K (2)

In the above formulation, objective function (1) consists of

two parts. The first is the sum of the execution costs and

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1556

the second the sum of the communication costs incurred

between interacting tasks residing on different processors.

Constraint (2) ensures that the total resource requirements

of the tasks assigned to each processor must not exceed its

resource availability.

III. DYNAMIC GREEDY HEURISTIC

The Dynamic Greedy (DG) algorithm is nothing but a

simple greedy algorithm applied on dynamic distributed

computing systems. In this approach, we are using a

simple greedy search algorithm or greedy heuristic to

obtain the next appropriate processor so that it maximizes

the system reliability.

System reliability can be maximized by decreasing

communication time in the whole process of task

allocation as to minimize the ratio of communication time

to computation time. As the communication time of local

machine is nearly zero, so we will select the local worker

for task allocation first or we will give higher priority to

the local processor than remote processor. We will also see

that the processor that we are using for allocation is free or

not. If the processor is free or ideal then a task can be

allocated to that processor. (In initial step to algorithm we

should have all tasks in task queue.)

IV. CONCLUSION

To the best of our knowledge, this is the first report on the

application of dynamic greedy heuristic to the task

assignment problem in distributed computing systems. We

used the simple greedy heuristic algorithm to minimize the

total time required to execute the application.

Furthermore, the DG has the advantages that it has fewer

parameters that need to be tuned than the competing

algorithms, and it is a rather simple, easily implementable

algorithm compared to HPSO algorithm and HBMO

algorithm. We are currently extending the application of

the proposed DG algorithm to another version of the task

assignment problem where each processor and each

communication link has a failure ratio and the goal is to

maximize the system reliability for accomplishing the task

execution.

ACKNOWLEDGMENT

We take this opportunity to express our deepest gratitude

and appreciation to all those who have helped us directly

or indirectly towards the successful completion of this

paper.

REFERENCES

[1] S Casavant, T., Kuhl, J.G., 1988. “A taxonomy of scheduling in

general-purpose distributed computing systems”. IEEE Transaction
on Software Engineering 14 (2), 141–154.

[2] Stone, H.S., 1977. “Multiprocessor scheduling with the aid of
network flow algorithms”. IEEE Transactions on Software

Engineering SE 3 (1), 85–93.

[3] Ernst, A., Jiang, H., Krishnamoorthy, M., 2006. “Exact solutions to
task allocation problems”. Management Science 52, 1634–1646.

[4] Chern, M.S., Chen, G.H., Liu, P., 1989. “An LC branch-and-bound
algorithm for module assignment problem”. Information

Processing Letters 32, 61–71.

[5] Sinclair, J.B., 1987. “Efficient computation of optimal assignments
for distributed tasks”. Journal of Parallel and Distributed

Computing 4, 342–361.

[6] Tom, A.P., Murthy, C.S.R., 1999. “Optimal task allocation in

distributed systems by graph matching and state space search”.

Journal of Systems and Software 46 (1), 59–75.

[7] Chockalingam, T., Arunkumar, S., 1995. “Genetic algorithm based

heuristics for the mapping problem”. Computer and Operations

Research 22, 55–64.

[8] Hadj-Alouane, A.B., Bean, J.C., Murty, K.G., 1999. “A hybrid

genetic/optimization algorithm for a task allocation problem”.
Journal of Scheduling 2, 189–201.

[9] Hamam, Y., Hindi, K.S., 2000. “Assignment of program modules
to processors: a simulated annealing approach”. European Journal

of Operational Research 122, 509–513.

[10] Yin, P.Y., Yu, S.S., Wang, P.P., Wang, Y.T., 2006. “A hybrid
particle swarm optimization algorithm for optimal task assignment

in distributed systems”. Computer Standard and Interface 28, 441–

450.

[11] Zou, D.X., Gao, L.Q., Li, S., Wu, J.H., Wang, X., 2010. “A novel

global harmony search algorithm for task assignment problem”.
Journal of Systems and Software 83 (10), 1678–1688.

[12] Jacobs, L.W., Brusco, M.J., 1995. “A local-search heuristic for

large set-covering problems”. Naval Research Logistics Quarterly
42, 1129–1140.

[13] Marchiori, E., Steenbeek, A., 2000. “An evolutionary algorithm for
large scale set covering problems with application to airline crew

scheduling”. Lecture Notes in Computer Science 1803, 367–381.

[14] Pan, Q.K., Wang, L., Zhao, B.H., 2008. “An improved iterated
greedy algorithm for the no-wait flow shop scheduling problem

Algorithm Dynamic_greedy()

{

 While (task queue is not empty)

 {

If active tasks on local machine are less

than total processors of system

{

Fetch a task and a free worker

from local workers and allocate

it to the worker

 }

Else

 {

Find out free remote worker

If remote worker is free and

tasks queue is not empty

Then

{

Fetch task from queue

and allocate it to

remote worker

 }

 }

}

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1557

with make span criterion”. International Journal of Advanced
Manufacturing Technology 38, 778–786.

[15] Ruiz, R., Stützle, T., 2007. “A simple and effective iterated greedy

algorithm for the permutation flowshop scheduling problem”.
European Journal of Operational Research 177 (3), 2033–2049.

[16] Ying, K.C., Lin, S.W., Huang, C.Y., 2009. “Sequencing single-
machine tardiness problems with sequence dependent setup times

using an iterated greedy heuristic”. Expert Systems with

Applications 36, 7087–7092.

[17] Dubois-Lacoste, J., López-Ibá˜nez, M., Stützle, T. “A hybrid TP +

PLS algorithm for biobjective flow-shop scheduling problems”.

Computers and Operations Research, in press.

[18] T.D. Braun, D. Hensgen, R.F. Freund, H.J. Siegel, N. Beck, L.L.

Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys,
B. Yao, “A comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous distributed

computing systems”, J. Parallel and Distributed Comput. 61 (6)
(2001) 810–837.

[19] G. Ritchie, J. Levine, “A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments”, in:

Proceedings of the 23rd Workshop of the UK Planning and

Scheduling Special Interest Group, 2004.

[20] Qin-Ma Kang, Hong He, Hui-Min Song, Rong Deng. “Task

allocation for maximizing reliability of distributed computing

systems using honeybee mating optimization”. Original Research
Article Journal of Systems and Software, Volume 83, Issue 11,

November 2010, Pages 2165-2174.

BIOGRAPHY

 Mr. R. D. Bharati He received M. Tech

in Computer Engineering from College of

Engineering Pune (COEP), University of

Pune. He received B. E. in Computer

Science and Engineering from Shree Guru

Gobind Sighji College of Engineering and Technology,

Nanded, Shri Ramanad Theert Marathwada University

Nanded (STRMU). He is working as Assistant Professor,

Department of Computer Science and Engineering, Pad.

Dr. D. Y. Patil Institute of Engineering & Technology,

Pimpri, Pune. He has around ten years of teaching

experience. He published two papers in International

Journals, nine papers in National conferences. His area of

interest includes Distributed Computing, Service Oriented

Architecture.

Vilas N. Jagtap, Qualification: BE

Computer (Appeared) Position: Student

Research Interests: Distributed Computing

System.

Omsagar C. Gupta, Qualification: BE

Computer (Appeared) Position: Student

Research Interests: Distributed Computing

System.

Shivanand S. Landge, Qualification: BE

Computer (Appeared) Position: Student

Research Interests: Distributed Computing

System.

