
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4365

PARALLELIZED COMPRISING FOR

APRIORI ALGORITHM USING

MAPREDUCE FRAMEWORK

A.Pradeepa
1
, Dr.Antony selvadoss Thanamani

2

Research scholar , Computer Science(Aided), NGM College, Pollachi, India
 1

Head & Associate Professor , Computer Science(Aided), NGM College, Pollachi, India
 2

Abstract: An integrating classification and association rule mining can produce more efficient and accurate classifiers than

traditional techniques. The recently introduces MapReduce based association rule mining for extracting strong rules from

large datasets. This mining is used later to develop a new large scale classifier. Map Reduce simulator was developed to

evaluate the scalability of proposed apriori algorithms on MaReduce. The developed associative rule mining inherits the

MapReduce scalability to huge datasets and to thousands of processing nodes. For finding frequent item sets, it uses hybrid

approach between miners that uses counting methods. The new miner generates same rules that usually generated using

apriori algorithms. Map Reduce classifier that based MapReduce associative rule mining. For the purpose of data mining to

big data, parallel comprising this algorithm employs different approaches in rule discovery, rule from frequent itemsets, and

rule pruning methods in these research fields. The present Map Reduce was developed to measure the scalability of

MapReduce based applications easily and quickly, in this paper comprehensive to evaluate an accurate and effective

classification technique, highly competitive and scalable if compared with other traditional and associative classification

approaches.

Keywords: Data mining, MapReduce, MRApriori algorithm, Association rule mining.

I. INTRODUCTION

Data processing and knowledge discovery for massive data

has always been an active research area in data mining [1].

There are many application associated with massive data,

such as association rule mining [2], sequential pattern

mining [3], text mining [4] and temporal data mining [5],

traditional techniques among the many algorithm based on

MapReduce. Dean and Ghemawat from Google firstly

presented a parallel comprising model in Map Reduce,

which was a framework for processing huge data sets on

certain kinds of distributable problems using an associations

rule. Data mining, a technique to understand and convert raw

data into useful information, is increasingly being used in a

variety of fields like marketing, business intelligence,

scientific discoveries, biotechnology, Internet searches, and

multimedia. Data mining is an interdisciplinary field

combining ideas from statistics, machine learning, and

natural language processing. Data mining in such

environments requires a utilization of the available

resources. Map Reduce is a popular computing model for

implemented in several systems. There are many research

papers related to MapReduce combined with the traditional

techniques [6]. MapReduce is an emerging programming

model to write applications that run on distributed

environments. Several implementations such Apache

Hadoop are currently used on clusters of tens of thousands

of nodes [7]. MapReduce design and the implementation of

data mining techniques relating to associative rules. This

trend to use distributed complex, heterocomplex,

heterogeneous computing environments has given rise to a

range of data mining research challenges. This method

explores the different methods and trade-offs when

designing and implementing distributed data mining

algorithms.

II. OVERVIEW OF MAPREDUCE CONCEPT

The parallel data processing system called MapReduce.

Jeffrey and Lammel [8] introduced the easy and abstracted

programming model, Map Reduce. Many computation

problems can be expressed using this model. It is inspired by

functional programming languages. The input and output

data have a specific format of key/value pairs. The users

express an algorithm using two functions: the Map functions

and the Reduce function. The Map function is written by the

application developer. It iterates over a set of the input

key/value pairs, and generates intermediate output key/value

pairs. The Map Reduce library groups all intermediate

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4366

values by key and introduces them to the reduce function.

The Reduce function is also written by the application

developer, it iterates over the intermediate values associated

by one key. Then it generates zero or more output key/value

pairs. The output pairs are sorted by their key value.

III. MAPREDUCE FRAMEWORK

MapReduce [9] is a linearly scalable programming model.

The programmer writes two functions a map function and a

reduce function each of which defines a mapping from one

set of key-value pairs to another. MapReduce framework

offers clean abstraction between data analysis task and the

underlying systems challenges involved in ensuring reliable

large-scale computation. The MapReduce framework and

the Hadoop distributed file system are running on the same

set of nodes.

IV. MAPREDUCE IMPLEMENTATIONS

While the programming model is abstracted, it is the job of

the implementation to deal with the details of parallelization,

fault tolerance, data distribution, load balancing, etc. The

Apache Hadoop [10] is the most popular and widely used

open-source implementation of Google’s MapReduce. It is

written in Java for reliable, scalable, distributed computing.

The code is available as the Apache License Version 2.0

[11]. Hadoop is being used by known enterprises e.g.

Facebook, Yahoo, Amazon and many others [12].

V. MINING FREQUENT ITEMSET AND

ASSOCIATIONS
Frequent items are patterns of itemsets or sequences that

frequently appear in a data set. For example, a set of items in

shopping basket, such as milk and bread that appear

frequently together in a transaction data set is a frequent

itemsets. Finding such frequent item plays an essential role

in mining associations, correlations, and many other

interesting relationships among data. Moreover, it helps in

data classification as well. Several classifiers [13] [14] [15]

[16] are built based on association rules. Thus, frequent

pattern mining has become an important data mining task

and a focused theme in data mining research. The Apriori

algorithm is one of the first algorithms used for mining

frequent itemsets to get association rules. It employs the

mining Apriori property that subsets of a frequent itemset

are also frequent items. It iterates over the data to generate

frequent k-itemset candidates based on the frequent (k-1)-

itemsets. Variations involving hashing [17] and transaction

reduction can be used to make the procedure more efficient.

Other variations include partitioning the data [18] (mining

on each partition and then combining the results) and

sampling the data [19] [20] (mining on a subset of the data).

These variations can reduce the number of data scans

required.

VI. MRAPRIORI REPRESENTATIONS ALGORITHM

MRApriori Algorithm using MapReduce framework. It can

be considered as hybrid approach between Eclat [21] and

apriori with HT pruning [17]. It first discusses distributing

apriori in MapReduce. MapReduce for frequent itemsets

counting in apriori specified good scalability for algorithm.

However, repeated scanning of dataset is still needed.

MRApriori eliminate the need to iterative scanning of the

data to find all frequent items. Instead, MRApriori repeats

scanning other intermediate data that usually keep shrinking

per iteration. Number of iterations is same as number of

iterations in Apriori. But usually, MRApriori scan less data

rather than scanning whole data as in Apriori. Thus, the

main differences between Apriori and MRApriori are:

 MRApriori do only one scan for the data in original

format.

 MRApriori uses new data structure to represent the

dataset.

 MRApriori uses batch set intersection using MapReduce

framework where Apriori uses counting.

 MRApriori uses batch rule extracting based on

MapReduce framework.

MRApriori consists of three steps, data initialization,

frequent items discovery, and rule extraction for frequent

items.

Start

Initialize Data,
map to line

number

To Line Space

(1……N)

To item Space

(1……N)

Size>0

Extract Strong

Association Rules

All frequent items

discovered

Rules Ready

Fig.1 Workflow of MRApriori Algorithm

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4367

 Data Initialization

MRApriori uses integer values to represents the items in

dataset. This makes the algorithm faster and takes less

memory sizes. Mapping items into integer values can be

delayed and merged to the step of finding frequent item sets

of size one. Dataset consists of transactions or records. Each

record contains several items. Items in each transaction may

be spars.

Frequent Items Discovery and Rule Pruning

Frequent ruleitem discovery phase in MRApriori works by

applying the support condition while repeating the

transformation of the input data between the Line space and

the Frequent Item space until discovering all frequent

ruleitem. Data transformation from a Line space to a

frequent space is performed using the MapReduce methods

–“ToFrequent.Mapper” and –“ToFrequent.Reducer”. The

input for the ToFrequent.Mapper method is <line, list of

ItemId>, and the output is <ItemId, Line>, which then gets

inputted to the ―ToFrequent.Reducer‖ and this method

outputs <ItemId, set of lines>.

Generate Strong Association Rules Form Frequent

Itemsets

MRApriori has collected the set of all frequent items of all

sizes that survived the support threshold. Then it follows the

apriori definitions to extract strong associated rules from

frequent item set. MRApriori also uses Map Reduce

framework to extract significant rules form all frequent item

sets.If all frequent item sets can fit in computer memory and

if the processing time is not that big then Hash table data

structure can be used to hold the data thrown from the map

function. In this case, the key will be the left-part and the

value will be set of (right-part: supp) entries for frequent

item fi. In the distributed implementation of this step, data

are thrown to distributed file system and the Map-Reduce

middleware is responsible to sort the entries and to fetch

them grouped to the reduce functions.

Algorithm Features

(i) All elements, either in line space or in frequent item

space, are saved in one virtual collection that has same data

structure. This produces simpler abstracted data that is easy

to be serialized and to be distributed among the cluster

nodes. Also, this helps to develop more abstracted

algorithms such as MRApriori which does not impose

restrictions on how to save and coordinate the distribution

the data. Data chunks can have arbitrary sizes with no effect

on MRApriori accuracy. This allows the underlined

middleware (Hadoop in our implementation) to split the data

dynamically to achieve load balancing execution with no

accuracy consequences. This is an advantage over other

algorithms that uses bagging [19] and boosting [20] are

affected very much with the sizes of the splits in parallel

implementations.

(ii) All candidate frequent items of all degrees are

represented in the same way. In the special cases where

number of attributes is less than hundreds of attributes,

MRApriori can use binary format as to hold the values of

dataset. Thus one integer number is sufficient to represent

the ColumnIds and another integer is sufficient to represent

RowId of the item. This is used heavily in MCAR algorithm

[15]. In cases of all twenty datasets used in experiments

from UCI [22], one integer number of 32 bits memory size

was sufficient to represent any frequent item of any degree.

(iii) In MRApriori, all data are saved on file system.

Processing the data is done in stream I/O reading. This is

much faster than accessing the datasets in random access

way.

VII. CONCLUSION

The MapReduce simulator that targets a Hadoop

environment. This is due to the lack of tools to investigate

the algorithms behavior on MapReduce. In this paper has

presented and evaluated MRApriori, a distributed associative

rule algorithm that capitalizes on the scalability, parallelism

and resiliency of MapReduce for large scale frequent items

discovery. MRApriori keeps reducing the data (using

support thresholds) while transforming the data between the

measures till it discovers all frequent items of long lengths.

Then it derives association rules from discovered frequent

items. MRApriori generates same number of rules generated

by all association rule miners that use same support and

confidence concepts. MRApriori jobs that run on Hadoop

applications are naturally balanced and can optimize

resource utilization in highly heterogeneous computing

environments. MRApriori is open source and available for

the community to download and to use for further

investigation and development. Future work will involve

multi support levels can be introduced to MRApriori as the

intermediate data has the clarity and independence to apply

different support levels on it per different iteration.

REFFERENCES
[1] J. Han, M. Kamber, Data Mining: Concepts and Techniques, second ed.,

Morgan Kaufman, San Francisco, 2006.

[2]P.Y. Hsu, Y.L. Chen, C.C Ling, Algorithms for mining association rules
in bag databases, Information Sciences 166(2004) 31-47.

[3] Y.C Hu, G.H. Tzeng, C.M. Chen, Deriving two-stage learning

sequences from knowledge in fuzzy sequential pattern mining, Information
Sciences 159(2004) 69-86.

[4] K. Lagus, S. Kaski, T. Kohonen, Mining massive document collections

by the websom method, Information Sciences 163(2004) 135-156.
[5] Y. Li, S. Zhu, X.S. Wang, S. Jajodia, Looking into the seeds of time:

discovering temporal patterns in large transaction sets, Information Sciences

176(2006) 1003-1031.
[6] J. Berlin ska, M. Drozdowski, Scheduling divisible MapReduce

computations, Journal of Parallel and Distributed Computing 71(2011) 450-

459.
[7]O.O. Malley and A.C. Murthy, -Winning a 60 second Dash with a

Yellow Elephant Hadoop implementation, March 2009, URL

http://sortbenchmark.org/Yahoo2009.pdf.
[8] R. Lammel, - Google’s MapReduce programming model - Revisited,

Science of Computer Programming, vol. 70, 2008, pp. 1-30.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4368

[9] J. Dean and S. Ghemawat, -MapReduce: simplified data processing on

large clusters, Communications of the ACM, vol. 51, Jan. 2008, pp. 107–113.

[10]Apache Software Foundation., -Apache Hadoop, Jan.2010, URL
ttp://hadoop.apache.org/.

[11]Apache Software Foundation, -Apache License, Version 2.0, 2004,

URL http://www.apache.org/licenses/LICENSE-2.0.
[12]PoweredBy Hadoop, June 2010 URL

http://wiki.apache.org/hadoop/PoweredBy

[13]B. Liu, W. Hsu, and Y. Ma, ―Integrating classification and association
rule mining, Knowledge discovery and data mining, 1998, pp. 80–86.

[14] Z. Tang and Q. Liao, -A New Class Based Associative Classification

Algorithm, Training, 2007, pp. 1-5.
[15] F. Thabtah, P. Cowling, and Y. Peng, -MCAR: multi-class

classification based on association rule, Computer Systems and

Applications, 2005. The 3rd ACS/IEEE International Conference on, 2005,
pp. 33.

[16] F.A. Thabtah, P. Cowling, and Y. Peng, -MMAC: A New Multi-Class,

Multi-Label Associative Classification Approach,‖ Proceedings of the
Fourth IEEE International Conference on Data Mining, 2004, p. 217–224.

[17]J.S. Park, M.-S. Chen, and P.S. Yu, -An effective hash-based algorithm
for mining association rules, Proceedings of the 1995 ACM SIGMOD

international conference on Management of data - SIGMOD ’95, New

York, New York, USA: ACM Press, 1995, pp. 175-186.
[18]S. Brin, R. Motwani, J.D. Ullman, and S. Tsur, -Dynamic itemset

counting and implication rules for market basket data, Proceedings of the

1997 ACM SIGMOD international conference on Management of data -
SIGMOD ’97, New York, New York, USA: ACM Press, 1997, pp. 255-264.

[19]L. Breiman, ―Bagging predictors‖ Machine Learning, vol. 24, Aug.

1996, pp. 123-140.
[20]Y. Freund, ―Boosting a Weak Learning Algorithm by Majority,

Information and Computation, vol. 121, Sep. 1995, pp. 256-285.

[21]M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ―New Algorithms
for Fast Discovery of Association Rules, 3rd Intl. Conf. on Knowledge

Discovery and Data Mining, vol. 20, 1997, pp. 283--286.

[22]C.L. Blake and C.J. Merz, ―UCI Repository of machine learning

databases,UCI Repository of Machine Learning Databases, 1998, URL

http://archive.ics.uci.edu/ml/.

