
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4494

Does Object-orientation really affect the

Algorithm performance

Nilima Karankar
1
, Lalit Gehlod

2
, Sarita Rathore

3

Assistant Professor, Computer Engineering Department, IET, DAVV, Indore, India
1

Assistant Professor, Computer Engineering Department, IET, DAVV, Indore, India
2

Student, Computer Engineering Department, IET, DAVV, Indore, India
3

Abstract: The performance analysis and measurement of object-oriented algorithms is becoming a new research topic in

software design. Different evaluation parameters and metrics for different performance aspects are introduced for algorithm

optimization for faster code development. Achieving performance efficiency with respect to time and code adaptability and

reusability are the main goals of various aspect of software design. Object orientation is really helpful in coding algorithms

fast and easily. This dissertation work will allow you to try various what-if scenarios using different object-oriented

concepts like aggregation, composition, inheritance etc. and thus provide algorithmic improvements to it. Various work had

been done for algorithm optimization with respect to hardware domain like CPU speed, memory size and I/O specifications

but how code efficiency can be improved in software will be done in this dissertation work. The paper evaluate the

effectiveness of software with respect to time, several optimizations will be suggested to improve the software quality and

programmer productivity.

Keyboard: Object orientation and concepts, memory

I. INTRODUCTION

The goal of this dissertation work is to present the metrics

for improving code efficiency so that object-oriented

software development can be better understood, controlled

and measured for better management of system development

and maintenance. The aim is to disclose how changes in

selection of different object-oriented concepts for

implementation will affect your execution time of the

software. Those aspects could be analyzed and optimizations

will be suggested. This aided to coders in building efficient

software with respect to time. These features measures in

particular way could become the set of criteria for

recognition of performance measurement of software.

Interpretations of those results do not lead to generalized

conclusions but shed more light on the phenomena of

software optimization and defines the way it could be

diagnosed, interpreted and improved. This dissertation work

will take input as implementations of application built with

the application of different object-oriented concepts. Output

of our work is the information and knowledge that enables to

ground the decisions with respect to software optimization.

Earlier research work on Software Complexity was done by

measuring the Cyclomatic Number of the program. Here the

focus has been on developing various object-oriented

metrics to measuresoftware quality, complexity and

productivity.

II. RELATED WORK

Software complexity has been defined differently by many

researchers. IEEE defined software complexity as “the

degree to which a system or component has a design or

implementation that is difficult to understand and verify”.

An important issue encountered in software complexity

analysis is the consideration of software as a human creative

artifact and the development of a suitable measure that

recognizes this fundamental characteristic. The existing

measures for software complexity can be classified into two

categories: the macro and the micro measures of software

complexity.

Major macro complexity measures of software have been

already proposed in several papers. The former considered

software complexity as “the resources expended”. The latter

viewed the complexity in terms of the degree of difficulty in

programming. Zuse defines software complexity as the

difficulty to maintain, change and understand software. It

deals with the psychological complexity of programs.

According to Henderson-Sellers the cognitive complexity of

software refers to those characteristics of software that affect

the level of resources used by a person performing a given

task on it. Basili defines software complexity as the measure

of the resources expended by a system while interacting with

the piece of software to perform a given task. Here,

interacting system may be a machine or human being.

Complexity may be defined in terms of execution time and

storage required to perform the computation when computer

acts as an interacting system, In case of human being

(programmer) as an interacting system, complexity is

defined by the difficulty of performing tasks such as coding,

testing, debugging and modifying the software.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4495

The micro measures are based on program code,

disregarding comments and stylistic attributes. This type of

measure typically depends on program size, program flow

graphs or module interfaces such as Halstead’s software

science metrics and the most widely known cyclomatic

complexity measure developed by McCabe. However,

Halstead’s software metrics merely calculate the number of

operators and operands they do not consider the internal

structure of software components, while McCabe’s

cyclomatic measure does not consider me /Os of software

systems. It is accepted by both software developers and

researchers that complexity of software can be controlled

more effectively through component-based and object-

oriented approach than traditional function-oriented

approach. It is because that object-oriented and component-

based paradigms control complexity of a software system by

supporting hierarchical decomposition through both data and

procedural abstraction.This paper presents an object-oriented

approach towards software complexity by focusing on the

computational complexity that characterizes the runtime

performance of an algorithm. The runtime measurement of

various Java applications, built with the application of

different object-oriented concepts, are measured and

compared to determine which is faster with respect to time.

Accordingly several metrics are suggested here to build

time efficient Java object-oriented code. The complexity

parameters are different object-oriented concepts like

inheritance, interfaces, composition etc. Here we

determine software complexity with respect to time in

object-oriented software development. So, there is strong

demand and need for designing of complexity metrics for

software which may be used by the application developers

to choose the best object-oriented concept in software

development and then finally produce the better quality

software

III. PROPOSED WORK

Through early background research, it has been decide to

initially investigate the ways of implementing this

benchmark.

Timing analysis of Java source code:

To implement this benchmark, the following steps are taken:

1. Finding the running time of the Java source code

2. Interpretation of measured timings of the source codes.

The initial step towards implementation is the creation of the

Java source codes with application of different Object-

oriented concepts.

Figure shows the template that List the various steps:

Figure 1.1 Source code prediction template using Mat lab

After creating Java source code, it is compiled to produce

the byte code or .class file. The running time measurement is

done in matlab after the successful connectivity of Java with

matlab. Then matlab m-files are prepared with the embedded

Java code and matlab commands to measure the execution

time. After executing m-files in matlab we get the running

time in seconds along with the output of the program. The

scenario is shown in following figure:

 Figure 1.2 Execution of Java code in Matlab

There is a clear point where the execution of the source

Code block is significantly different than the other Java

Application built with other concept. For example, a

Program is built with the inheritance and the same program

Is built with the composition concept are both producing The

same output but their running time will differ, so we Suggest

that coding with composition is faster. Such Metrics are

provided here so that application developers Can build an

efficient code with respect to time. One domain of the

characterization is the predicted application’sexecution time

and as Java has become a popular programming medium our

majority of work is done in javaand Matlab simulation

software.

Static

Java

Compiler

Static

Compile Time

 Mat lab Executable

Program

Java

.Class

File

 M-file

Run Time

Creating Java source code

Preparing byte code sequence

Set path for .class file in Mat

lab

Build Mat lab M-files with

tic, toc command

Execution of M-Files

in Mat lab

Java code

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 11, November 2013

Copyright to IJARCCE www.ijarcce.com 4496

IV. RESULTS AND DISCUSSIONS
The objective to implement this benchmark is to establish a

framework for an efficient and accurate Java source code

development. The graphical representations of the results are

shown with the following bar charts:

Figure 1.3 Compositions versus Inheritance

Figure 1.4 Interface versus abstract class

Figure 1.5 Static versus non-static members

The above charts represent the results tabulated as shown in

the figure:

Table 1.1 Execution Time

By observing the tabular representation of the results, it

could be seen that the relationship between the measured

execution time and java applications built with the different

object-oriented concepts is consistent with the theoretical

concepts in the design patterns. To ensure the observations

made are fair and accurate, several applications within the

Java benchmark suites have also been taken into

consideration in measuring the execution time. Experimental

results presented here for benchmark suite shows that there

is a marked reduction in execution time as we move from

inheritance to composition, abstract class to interface and

non-static member to static members.

V CONCLUSIONS
The presented paper provides certain metrics that are to be

followed to do software optimizations. It should help in

improving the programmer’s productivity and software

development. The software optimizations suggested here do

need to be carefully employed to yield good results.

There are a number of directions in which this research can

continue. One metric which needs to be explored is the

storage analysis of Java Source code. It would be interesting

to test this by designing a set of Java applications using the

object-oriented technology and then measuring the

complexity in storage space and determining the applications

that need least space so as to save time and cost of software

development.

 REFERENCES
[1] Lars O Anderson. Program Analysis and Specialization C Programming

language Ph.D.dissertation, University of Copenhagen, DIKU, May 1994.
[2] V.R Bacilli, Qualitative Software Complexity Models: A Summary in

Tutorials on Models and Methods for Software Management and

Engineering, Los Alamitos, Caliph: IEEE Computer Society Press, 1980.
[3] J.K Kearney, R.L. Sedlmeyer, W.B. Thompson, M.A Gary, and M.A

Adler, Software Complexity Measurement,

vol. 28, New York: ACM Press, 1987.

[4] T.H McCabe, “A Complexity Measure”, IEEE Trans. Software Eng.,

vol. 2,1976.

Benchmarks

of

runs

Minimum

execution

time in

seconds

Inheritance 6 0.016

Composition 6 0.015

Abstract class 7 0.03

Interface 7 0.015

Static member 5 0.015

Non-static member 5 0.016

