
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3803

A NOVEL WAY OF INFORMATION

RETRIEVAL FROM XML USING

EFFICIENT HOLISTIC ALGORITHMS

Ravi Kiran Yandrapragada
1
, Poreddy Dayakar

2

M.Tech, Computer Science Engineering, MLRIT, Hyderabad, Andhra Pradesh, India
1

Assistant Professor, Department of CSE, MLRIT, Hyderabad, Andhra Pradesh, India
2

Abstract: XML has become a de facto standard in industry as a data carrier across multiple technologies. XML parsing is

one of the key challenging technologies. The process of identifying all the occurrences of a twig pattern specified by a

given predicate on multiple data elements in an XML document is a basic fundamental operation for efficient evaluation of

XML queries. Hence the concept of indexing and querying of XML documents efficiently has been a major research issues

in the XML community. Much research has been done for providing an efficient way to evaluate twig patterns in an XML

database. As a result, many holistic join algorithms have been developed, most of which are derivatives of the well-known

Twig Stack algorithm.

In this paper, we came up with a novel way of algorithm which helps in retrieving information from XML using various

functions, which may include like Boolean function, comment node function, count function, wildcards and order

restriction, negation functions.

1. INTRODUCTION

Since the evolution of software technologies the main way

of generating and exchange of information in a common

unique fashion is through XML and hence, there is an

increasing need for efficient processing of queries for

information on XML data. An XML query pattern can be

represented as a rooted labeled structured tree often referred

to as twig [1]. For example, consider the following XQuery

path expression:

book [title = „XSL‟] //author[. = „Lincoln‟]

The above expression matches the author elements that (i)

have as content the string value “Lincoln”, and (ii) are

descendants of book elements that have a child title element

whose value “XSL”. This XQuery path query expression can

be equated to a node-labeled tree pattern with elements and

string values as node labels. Such a complex structured

query tree pattern can be naturally decomposed to a set of

basic parent-child and ancestor-descendant relationships

between pairs of nodes. For example, the basic structural

relationships corresponding to the above query are the

ancestor descendant relationship (book, author) and the

parent-child relationships (book, title), (title, XSL) and

(author, Lincoln). The query pattern can then be matched by

(i) matching each of the binary structural relationships

against the XML database, and (ii) “stitching” together these

basic matches. Efficiency of XML tree patterns matching

has been considered widely as one of the core operation in

XML query processing. In recent years, many methods ([9],

[14], [3], [11], [12], [15]) have been proposed to retrieve

information from XML tree queries efficiently and

effectively. To consider, in particular, Khalifa [1] proposed a

stack-based algorithm which helps in matching of binary

structural relationship including parent-child (P-C)

relationship and also the ancestor-descendant (A-D)

relationships. The limitation of Khalifa approach is that the

size of useless intermediate results may become to extremely

very large, even if the final results produced is very small.

Bruno proposed a novel way of holistic twig join algorithm

and named it as TwigStack, which processes the tree pattern

holistically without decomposing it into several tiny binary

relationships. The TwigStack algorithm guarantees that there

are less/no “useless” intermediate results for queries with

only ancestor-descendant (A-D) relationships. In other

words, the algorithm can be TwigStack is suitable for tree

pattern queries with only A-D edges [8]. We have proposed

a holistic algorithm called TreeQueueMatch which helps in

bringing out results from XML using various functions like

negation function, Boolean function (TQ1),comment node

function (TQ2), count function (TQ3), wild card function

(TQ4), order restriction function (TQ5), negation function

(TQ6) as shown in the Figure 1.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3804

Fig 1: Various functions of TreeQueueMatch

 Many new and recent works examine how to enlarge the

optimality of query class of holistic algorithms [14], to speed

up the performance using indexes [11], [5], to devise a new

data streaming strategies [6], and to propose an efficient and

dynamic labeling schemes [16]. These algorithms have

proven highly to be promising and make their way

groundbreaking in XML query processing applications, both

in academic and industrial settings [19].

2. RELATED WORKS

In the context of semi-structured XML databases, tree based

query pattern is a very practical and is an important class of

queries. Lore DBMS [9] and Timber [10] systems have

considered various aspects of query processing on such

XML data and queries. The XML data and various issues in

their storage as well as query processing using relational

database systems have recently been considered in [8], [17],

[12], [19].

From a theoretical point of research about the optimality of

XML tree pattern matching, Choi et al. [17] developed

theorems to prove that it is very difficult to devise a holistic

algorithm to guarantee the optimality for queries with any

combination of P-C and A-D relationships. Shalem and

others [14] researched the space complexity for the

processing of XML twig queries. Their article showed that

the upper bound of full-fledge queries with parent-child and

ancestor-descendant edges are O(C), where C is the

document size. In other words, their results have also

theoretically proved that there exist no such algorithms to

optimally process an arbitrary query. Our research in this

article moves the frontier a bit forward by identifying a large

subclass of XML which can be guaranteed to process

optimally. The recent papers (e.g. [17], [12], [12], [6], [5])

have also closely related to ours. In paper [17], a new

holistic algorithm, called OrderedTJ, has been proposed to

process order-based XML tree query. In paper [16], [12],

[10] an algorithm called TwigStackList is proposed to

handle queries with negation function. In this article, we

follow the line of holistic XML tree pattern processing and

give a complete solution to efficiently process extended

XML tree queries with wildcards, negative predicates and

ordered/unordered restriction.

3. PROPOSED MODEL

In this article, we call an XML tree pattern with comment

node function, count function, Boolean function, negation

function, wildcards and/or order restriction as extended way

of XML tree pattern. Figure 1, for example, shows six new

XML tree design patterns. Query (a) includes a boolean

function. Query (b) includes a comment function so that we

can get comments in XML data that matches the given

predicate. Query (c) includes a count function to count the

total number of elements that matches a given query (d)

includes a wildcard node “*”, which can match any single

node in an XML database. The Query (e) specifies and order

restriction which can be placed on the given query while

retrieval of information for the data. Query (f) includes a

negative edge, denoted by „¬‟.In XPath language [2], the

semantic of negative edge can be presented with “not”

boolean function. Query (e) has order restriction, which is

equivalent to an XPath “//A/B [following-sibling::X]”.

The ordering „<‟ symbol in a figure 1 shows that all the

children under A are ordered. The semantics of the ordered-

base tree design pattern is captured by mapping pattern

nodes to the nodes of an XML data, such that the structural

and ordered relationships are finally satisfied. Finally, Query

(d) is more complicated, which contains wildcard. Previous

XML tree design pattern matching algorithms does not fully

exploit the use of “optimality” in holistic algorithms. The

TwigStack [3] guarantees that there is no useless

intermediate result for queries with only Ancestor-

Dependent (A-D) relationships.

Therefore, The TwigStack algorithm is optimal for queries

with only A-D edges. Another algorithm called

TwigStackList [14] enlarges the optimal query class of

TwigStack by including Parent-Child (P-C) relationships in

non-branching edges. It has become a quite natural question

that whether the optimal query class of TwigStackList can

be further improved or not. And hence, the current open

problems also includes on (1) how to identify a larger query

which can processed optimally and (2) how to efficiently

process a query which cannot be guaranteed to give optimal

results. Note that earlier works in [13], [8], [21] have already

showed that no algorithm is optimal for queries with any

arbitrary combinations of A-D and P-C relationships.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3805

Fig 2: TreeQueueMatch Algorithm

This article also explores the challenges and also shows the

promise of a novel theoretical framework called

“TreeQueueMatch” to identify a large optimal query class

for posing extended XML tree queries. The

TreeQueueMatch algorithm is specified in figure 2. Given a

document element e which is visited in post-order, we will

first check if e can be pushed into the corresponding

hierarchical stack HS[E], or in other words, if all E‟s have

child axes that can be satisfied. Once the document element

e satisfies all the axes requirements for query node E, then

we push e into the hierarchical stackHS[E]. Meanwhile, we

need to maintain the hierarchical structure of the elements in

the hierarchical stack HS[E]. To achieve this, we also merge

the stack trees in HS[E] based on e and push e to the top of

the merged stack). And when there are no existing stack tree

that is the descendant of e, a new stack will be created to

hold e. In general, given an extended XML tree pattern

query which may include P-C, A-D relationships, comment

function, order restriction, count function, negation function

and boolean as well as wildcards functions, we consider the

problem efficiently by matching the XML tree query. Our

algorithm aims at identifying a large query which can be

optimally processed. Similar to the previous papers on XML

tree pattern matching (e.g. [3], [12], and [16]), in this article,

we call a holistic algorithm called TreeQueueMatch which is

“optimal” for a kind of query class, and it guarantees that

any output intermediate results contribute to final answers.

4. PROTOTYPE IMPLEMENTATION

The prototype application is built to demonstrate as a proof

of concept and also to offer a comprehensive evaluation of

our new holistic algorithms also we have conducted

experiments on both synthetic and real XML data. The

synthetic dataset is generated randomly. The environment

used to build the application includes a PC with 2 GB RAM,

Intel I7 2.3GHz CPU processor running Windows 7

operating system. The platform used to develop the

application Java 7.0 using NTFS file system as a simple

storage engine and the development tool is done using

Eclipse Galileo.

5. EXPERIMENTAL RESULTS

In this section, we have presented an experimental study of

new TreeQueueMatch algorithm on the real-life and

synthetic data sets. Our results have also demonstrated the

effectiveness, in terms of accuracy as well as optimality, of

the TreeQueueMatch holistic algorithms for large XML data

sets. The benefits have been comparing to other four

algorithms which were proposed much earlier called

TwigStack[3], TJFast[16], OrderedTJ [17] and

TwigStackList [12]. To experiment, we have considered a

Small size of main memory in the first experiment; here we

did not allow the output list in TreeQueueMatch algorithm to

buffer any elements in the main memory, meaning that any

element added to output list should be output to the

secondary storage.

Fig 3: Experimental results of TreeQueueMatch

Then the requirement for main memory size is quite small.

The purpose of this experiment is to simulate the application

where the document is extremely large but the available

main memory is relatively small. We made the experiments

by using three different sizes of random documents. In

particular, E1 has 210K nodes and E2 has 700K nodes and

E3 has 1.2M nodes. Interestingly, Q6 is optimal for E1 and

E2, but only slightly sub-optimal for E3. This can be

explained that E3 is a larger document than E1 and E2 so

that E3 manifests the sub-optimality which is hidden in E1

and E2. The output result of our experiment can be depicted

in fig 3.The advantage is due to the fact that

TreeQueueMatch guarantees that (almost) all of output

elements belong to final results, which, in general, avoids

the unnecessary I/O cost for outputting the useless

intermediate results. The experimental results demonstrate

that the number of output elements in TreeQueueMatch is

always much less than that that of TwigStack and TJFast for

different sizes of main memory. The reason due to that

TwigStack and JFast buffer the intermediate results in the

main memory and reduce the output of intermediate results.

But the numbers of output elements in TreeQueueMatch

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3806

remain the same, which always equals the final result size.

From all tested queries, TreeQueueMatch has better

performance than the previous algorithms. We contribute

this improvement to the larger optimal query class

TreeQueueMatch algorithm achieves. Since all the six

queries contain negation, wildcards, comment, negative edge

and order restriction, only our TreeQueueMatch can answer

such complicated queries. The execution times of Q19 and

Q25 are 16 and 12 seconds, respectively. Note that the above

execution performance is achieved by using a relatively very

small buffer size, we expect that our system can scale well

for even gigabytes of XML data based on the current

machine.

6. CONCLUSION

We have introduced a new holistic algorithm called as

TreeQueueMatch and also introduced new functions to

retrieve information using various functions. We have also

identified a large optimal query classes for six different

kinds of queries, that is ã, - -, count, //*, <, respectively.

Based on the obtained results, we have identified that this

algorithm is best to achieve such an optimal query results.

Finally, our extensive experiments demonstrate the

advantage of our holistic algorithms on XML to verify the

correctness of theoretical results.

REFERENCES

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D.

Srivastava. Structural joins: A primitive for efficient XML query pattern

matching. In Proc. of ICDE Conference, pages 141–152, 2002.
[2] A. Berglund, S. Boag, and D. Chamberlin. XML path language (XPath)

2.0. W3C Recommendation 23 January 2007

http://www.w3.org/TR/xpath20/.
[3] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: optimal

XML pattern matching. In Proc. of SIGMOD Conference, pages 310–321,

2002.
[4] C. Y. Chan, W. Fan, and Y. Zeng. Taming xpath queries by minimizing

wildcard steps. In Proceeding of VLDB, pages 156–167, 2004.

[5] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S.
Candan. Twig2stack: Bottom-up processing of generalized-tree-pattern

queries over xml document. In Proc. of VLDB Conference, pages 19–

30,2006.

[6] T. Chen, J. Lu, and T. W. Ling. On boosting holism in xml twig pattern

matching using structural indexing techniques. In SIGMOD, pages 455–

466, 2005.
[7] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient

structural joins on indexed XML documents. In Proc. of VLDB, pages 263–

274, 2002.
[8] B. Choi, M. Mahoui, and D. Wood. On the optimality of the holistic

twig join algorithms. In Proceeding of DEXA, pages 28–37, 2003.

[9] R. Goldman and J. Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In Proc. of VLDB, pages 436–

445, 1997.

[10] H. V. Jagadish and S. AL-Khalifa. Timber: A native XML database.
Technical report, University of Michigan, 2002.

[11] H. Jiang et al. Holistic twig joins on indexed XML documents. In

Proc.of VLDB, pages 273–284, 2003.

[12] H. Jiang, H. Lu, and W. Wang. Efficient processing of XML twig

queries with OR-predicates. In Proc. of SIGMOD Conference, pages 274–

285,2004.
[13] Q. Li and B. Moon. Indexing and querying XML data for regular path

expressions. In Proc. of VLDB, pages 361–370, 2001.

[14] J. Lu, T. Chen, and T. W. Ling. Efficient processing of xml twig
patterns with parent child edges: a look-ahead approach. In CIKM, pages

533–542, 2004.

[15] J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended xml tree pattern
matching: theories and algorithms. In Technical Report, 2010.

[16] J. Lu, T. W. Ling, C. Chan, and T. Chen. From region encoding to

extended dewey: On efficient processing of xml twig pattern matching. In
VLDB, pages 193–204, 2005.

[17] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Efficient processing of

ordered XML twig pattern matching. In DEXA, pages 300–309, 2005.
[18] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J.

Shekita,and C. Zhang:. Storing and querying ordered XML using a

relational database system. In Proc. of SIGMOD, pages 204–215, 2002.
[19] P. O‟Neil, E. O‟Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury.

ORDPATHs: Insert-friendly XML node labels. In SIGMOD, pages 903–

908, 2004.

BIOGRAPHIES

Y. Ravi Kiran, he is currently pursuing

M.Tech (CSE) in MLRIT, Hyderabad, AP,

INDIA. He has received B.Tech in

Computer Science and Systems Engineering

in the year 2009 and M.B.A in finance in the

year 2011. His main research interests

include Data mining, Web services, XML and Big Data.

 P. Dayakar, has received his M.Tech

(Software Engineering) in 2010 from

JNTU, Hyderabad, India, Now he is

working as Assistant Professor in Dept. of

CSE in MLR Institute of Technology,

Hyderabad, A.P., India. He has more than 4

years‟ of experience in academics. He published a paper in

International Journal on Network Protocols. His main

research includes networks and data mining.

