
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3829

Defenses To Protect Against SQL Injection

Attacks

Neha Mishra
1
, Sunita Gond

2

Student-M-Tech, Department of Information Technology, B.U.I.T, Barkatullah University, Bhopal (M.P), India
1

Professor, Department of Information Technology, B.U.I.T, Barkatullah University, Bhopal (M.P), India
2

Abstract: Web applications are steadily increasing in our daily routines activities and continue to integrate them. Online

Banking, On-line reservations, on-line shopping expect these web applications to be secure and reliable; the terror of SQL–

Injection Attacks has become increasingly frequent and serious. SQL Injection Attacks are one of the topmost threats for

web application security. Using SQL Injection attackers can leak confidential information: such as credit card numbers,

ATM pins, User credentials from web applications and even corrupt the database. This paper presents a new technique to

protect Web applications against SQL injection Attacks. SQL Injection Attacks are a class of attacks that many of these

systems are highly vulnerable to, and there is no known foolproof defense against such attacks. In this paper, some

predefined methods are discussed and integrated approach of encryption method with secure hashing is applied in the

database to avoid attack on login phase. This combined method is applied to a system where user’s information is kept and

the designing of this system are done by using PHP and MYSQL.

Index –Terms: Database security, SQL injection attacks, Hashing, Encryption technique, Preventions.

I. INTRODUCTION

 With the rising use of internet, web application

vulnerability has been increasing effectively. All web

applications are depended on the Internet. Example:-e-

banking, admission portals, online shopping, and various

government activities like online electricity bills payment

etc. Since these applications are used by hundreds of people,

in many cases the security level is weak, which makes them

vulnerable to be attacked by external users. From time to

time, the users need to interact with the backend databases

through the user interfaces for various tasks such as: modify

data, manipulating queries, extracting data, and so forth. For

all these operations, design interface plays crucial role, the

quality of which has a great bang on the security of the

stored data in the database. A less secure Web application

design may allow crafted injection and malicious update on

the backend database. This trend can cause lots of damages

and thefts of trusted users’ sensitive data by unauthorized

users. In the worst case, the attacker may gainful control over

the Web application and totally destroy or damage the

system. This is effectively achieved, in general, through

SQL injection attacks on the online Web application

database.

Fig.1. Web Application (REQUEST/RESPONSE) Structure

 According to OWASP report released in 2012, SQL

Injection attacks are top most risk/danger to Web

applications [11].SQL Injection Attack occurs when

adversary changes the logic, semantics or syntax of an SQL

query [1]. The query which is generated dynamically based

on user input, maliciously crafted with SQL keywords,

operators, strings or literals, executes in the database server.

The aim of the intruder for the SQL Injection Attack is to

access database for which he is unauthorized [2]. So,

accessing information beyond limitations intruder applies

SQL Injection Attack in the form of queries which are

syntactically correct [3]. It is, therefore, top important to

prevent such types of attacks, and topics of research in the

industry and academia. There has been significant progress

in the field and a number of models have been proposed and

developed to counter SQL Injection Attack, but no one have

been able to assure absolute level of security in web

applications, mainly due to the variety and scope of SQL

Injection Attack’s. One common encoding practice in

today’s times to avoid SQL Injection Attack is to use

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3830

database stored procedures as an alternative of direct SQL

statements to interact with original databases in a web

application. However, there are vulnerabilities in this scheme

too, most notably when dynamic SQL statements are used in

the stored procedures, to obtain the database objects during

runtime. Our work is centered on this particular type of

vulnerability in stored procedures and we expand a scheme

for detection of SQL Injection Attack in scenarios where

dynamic SQL statements are used. This paper is prearranged

as follows: Section I show the introduction of web attack and

how SQL Injection Attack is vulnerable reason of attack,

section II show update about SQL Injection Attack, section

III show varieties of SQL Injection Attack and in IV section

show the various methods used for detecting and preventing

SQL Injection Attack and in V section our projected work

and in last section conclusion is present.

II. OVERVIEW OF SQL INJECTION ATTACK?

 While Typing SQL keywords and control signs an intruder

is able to modify the structure of SQL query developed by a

Web designer. SQL Injection is a kind of web application

security exposure in which an attacker is able to expose a

database SQL command, which is executed by a web

application. SQL Injection attacks can take place when a

web application utilizes user-supplied data without proper

validation or encoding as part of a command or query.

 SQL injection attacks are nothing but injecting malicious

queries by the hackers into the application projected queries

to get the desired outputs from the database.SQL Injection

allows an attacker to create, read, update, modify, or delete

data stored in the back-end database.

Aspects of SQL Injection:-

 SQL injection is a software exposure that occurs when

data entered by users is sent to the SQL interpreter as a

piece of an SQL query.

 Attackers provide specially crafted input data to the SQL

interpreter and trick the interpreter to execute unintentional

orders [2]

 Attackers utilize this exposure by providing specially

crafted input data to the SQL interpreter in such a way that

the interpreter is unable to distinguish between the actual

commands and the attacker’s specially crafted data. The

interpreter is tricked into executing unintended commands

Fig 2. SQL Injection

Thus, SQL injection exploits security vulnerabilities at the

database layer.

III SQL INJECTION ATTACK TYPES

 There are diverse methods of attacks that depending on

the goal of attacker are performed together or sequentially

and its classification is given below:-

Tautologies: - This type of attack injects SQL tokens to the

conditional query statement to be evaluated always true. This

type of attack used to avoid authentication control and access

to data by exploiting vulnerable input field which use

WHERE clause. "SELECT * FROM employee WHERE

userid = '211' and password ='bbb' OR '1 '='1 III as the

tautology statement (1=1) has been added to the query

statement so it is always true.

Illegal/Logically Incorrect Queries:- When a query is not

needed, an error message is returned from the database

including useful debugging information. This error messages

help attacker to discover vulnerable parameters in the

application and consequently database of the application. In

fact attacker injects junk input or SQL tokens in query to

produce syntax error, type mismatches, or logical errors by

reason. In this example attacker makes a type mismatch error

by injecting the following text into the pin input field.

1)Original

URL:http://www.arch.polimi.it/eventi/?id_nav=886

2)SQLInjection:

http:/`/www.arch.polimi.it/eventi/?id_nav=8864'

3) Error message showed:

 SELECT name FROM Employee WHERE id =8864\' from

the message error we can find out name of table and fields:

name; Employee; id. By the gained information attacker can

arrange more strict attacks [3].

Union Query: By this method, attackers join injected query

to the safe and sound query by the word UNION and then

can get data about other tables from the application. The

http://www.arch.polimi.it/eventi/?id_nav=8864

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3831

output of this attack is that the database returns a dataset that

is the union of the results of the original query with the

results of the injected query.

SELECT Name, Address FROM Users WHERE Id=$id by

injecting the following-

Id value: $id=1 UNION ALL SELECT creditCardNumber,1

FROM CreditCarTable.

We will have the following query: -

SELECT Name, Address FROM Users WHERE Id=1

UNION ALL SELECT creditCardNumber, 1 FROM

CreditCarTable which will join the result of the original

query with all the credit card users.

Piggy-backed Queries: In the piggy-backed Query attacker

tries to add on additional queries to the original query string.

In this method the first query is original whereas the

following queries are injected one. Here the intruders exploit

database by the query delimiter, such as ";", to append extra

query to the original query. With a successful attack database

receives and execute a multiple different queries. In the

following example, attacker inject " 0; drop table user " into

the pin input field instead of logical value. Then the

application would produce the query: SELECT info FROM

users WHERE login='aaa' ANDpin=0; drop table users

Because of ";" character, database accepts both queries and

executes them. The second query is illegitimate and can drop

users table from the database. It is clear that some databases

do not need special separation character in multiple distinct

queries, so for detecting this type of attack, scanning for a

special character is not remarkable solution.

Stored Procedure: In this technique, attacker focuses on the

stored procedures which are present in the database system.

Stored procedures run directly by the database engine.

Stored procedure is nothing but a code and it can be

vulnerable as program code. For authorized/unauthorized

user the stored procedure returns true/false. As an SQL

Injection Attack, intruder input “; SHUTDOWN; --" for

username or password. Then the stored procedure generates

the following query:

 For example:-

 SELECT accounts FROM users WHERE login= '1111'

AND pass='1234 '; SHUTDOWN;--; this type of attack

works as piggyback attack. The first original query is

executed and consequently the second query which is

illegitimate is executed and causes database shut down. So, it

is considerable that stored procedures are as vulnerable as

web application code

Inference: By this type of attack, intruders change the

behavior of a database or application. There are two well-

known attack techniques that are based on inference: blind

injection and timing attacks.

• Blind Injection: At times developers hide the error details

which help attackers to compromise the database. In this

situation attacker face to a generic page provided by

developer, instead of an error message. So the SQL Injection

Attack would be very difficult but not impossible. An

attacker can still steal data by asking a series of True/False

questions through SQL statements.

SELECT accounts FROM users WHERE login= 'doe' and 1

=0 -- AND pass = AND pin=O SELECT accounts FROM

users WHERE login= 'doe' and 1 = 1 -- AND pass = AND

pin=O

If the application is secured, both queries would be

unsuccessful, because of input validation. But if there is no

input validation, the attacker can try the chance. First the

attacker submits the first query and receives an error

message because of "1 =0 ". So the attacker does not

understand the error is for input validation or for logical

error in query. Then the attacker submits the second query

which always true. If there is no login error message, then

the attacker finds the login field vulnerable to injection [2].

• Timing Attacks: A timing attack lets attacker gather

information from a database by observing timing delays in

the database's responses. This technique by using if-then

statement cause the SQL engine to execute a long running

query or a time delay statement depending on the logic

injected. This attack is similar to blind injection and attacker

can then measure the time the page takes to load to

determine if the injected statement is true. This technique

uses an if-then statement for injecting queries. WAITFOR is

a keyword along the branches, which causes the database to

delay its response by a specified time.

 For example, in the following query: declare @

varchar(8000) select @ = db_nameO if (ascii(substring(@,

1, 1)) & (power(2, 0))) > 0 waitfor delay '0:0:5' Database

will pause for five seconds if the first bit of the first byte of

the name of the current database is 1. Then code is then

injected to generate a delay in response time when the

condition is true. Also, attacker can ask a series of other

questions about this character. As these examples show, the

information is extracted from the database using a vulnerable

parameter.[2]

IV RELATED WORK

 In order to detect and prevent SQL Injection attacks,

filtering and other detection methods are being researched.

This section explains the related work.

IndraniBalasundaram In [6]This paper proposes

technique―Service-Oriented Authentication‖ is to prevent

SQL–Injection Attacks in database the deployment of this

technique is by appending first level Service has the

functionality of Tame-card detection and Prevention. The

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3832

Second level Service has the functionality of Authentication

Checker also dataset (the temporary storage of database) of

application scripts additionally allowing seamless integration

with currently-deployed systems.

Table I: User table without security guidelines contains only

username & passwords

William G.J.Halfondet al.‟s Scheme- [10] - proposed an

approach that works by combining static analysis and

runtime monitoring of database queries. In its static part,

technique uses program analysis to automatically build a

model of the legitimate queries that will be generated by the

application. While in the dynamic part, the technique

monitors the dynamically runtime generated queries and

checks them for acceptability with the statically-generated

model. A query that doesn’t match with the model represent

potential SQL Injection Attacks and are hence prevented

from executing on the database and reported

Table 2: User table with security guidelines also contains the

hash values.

 Sonam Panda Approach - In [3], propose a technique

where predefined methods are used and hybrid encryption

method is applied in the database to stay away from attack

on login phase. This applied hybrid encryption method is a

integration of Advanced Encryption Standard (AES) and

Rabin cryptosystem.

Ali et al.‟s Scheme - [8] adopts the hash value approach to

further improve the user authentication mechanism. They use

the user name and password hash values SQLIPA (SQL

Injection Protector for Authentication) prototype was

developed in order to test the framework. The user name and

password hash values are created and calculated at runtime

for the first time the particular user account is created.

V PROPOSED TECHNIQUE

 In this paper we proposed a new technique for preventing

Database against SQL injection attack using an Integrated

Approach. During this approach, in a Login Table, two

columns are created by DBA. One for username and other is

used for password. Our tactic requires two more columns.

One for the secure hash value of username and one for the

password. The secure hash values of username and password

are designed and stored in Login Table when the user’s

account is first time created with the web application.

Whenever user desires to login to database his/her identity is

verified via username, password and secure hash values.

These secure hash values are generated at runtime using

stored procedure when user wants to login into the database.

 In database there also separate tables for AES encryption

and combined approach of secure hashing on encryption.

Different techniques and methods are being developed which

are used to protect the database. By applying encryption

technique, database attacks can be prevented. Encryption of

data basically helps to change the data into a form that is not

readable [1]. Without the correct key, this format can’t be

deciphered even if attacker hacks the information.

Application of encryption in login phase makes it difficult

for unauthorized users to access the database. In this paper,

some predefined methods are discussed and mixture of

encryption method with secure hashing is applied in the

database to avoid attack on login phase. This applied

integrated approach is an encryption method which is a

combination of Advanced Encryption Standard (AES) and

Secure Hashing technique.

Fig.3. Proposed integrated approach architecture

VI. CONCLUSION AND FUTURE WORK

 The SQL - Injection Attacks are tremendously dangerous

in association to other types of Web-based attacks, for the

reason that here the end result is data manipulation.SQL

injection holes can be easily exploited by a technique called

SQL Injection Attacks. The web-application code perfectly

[1] ID [2] Username [3] Password

[4] 1 [5] Neha [6] password123

[7] 2 [8] Rishab [9] Rish84

Id
Userna

me
Password Hash_username* Hash_ password*

1 Neha password123
14AB6EE730DFC50936B5

45A683A0719380B9E9E6

F5629535196ECA033BBA8

02EA1A576FBC936EB0

2 Rishab Rish84
647C02E46B4DA59498860

C21AA4A9391DDC52F1A

8FA94ACBAC6B92269B5E

8C280ECB55E443661655A

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3833

contains a policy that allows distinguishing lawful and

malicious queries. In this paper, different varieties of SQL

injection attacks as well as predefined prevention methods

are discussed. Then the hybrid approach of encryption is

used which includes AES

encryption and Secure hashing method. The reason behind

applying two layer of encryption & hashing is that it will

provide more security in database. SQL query is generated

and encrypted by using AES technique which is further

hashed by a secure hashing technique and as we know

hashed codes is a one way encryption technique thus it is not

possible to decode it. This proposed integrated approach is

an effort to add some more security measures to databases to

avoid SQL injection attack.

 In this work, we have concentrated on the particular area

of SQL injection. I think that this area is in need of more

research, mainly because of various reasons: - SQL injection

attacks are most probable to change and new vulnerabilities

will be found, collectively with new countermeasures to deal

with them. As many hacking sites are existing on the web,

and since attack methods are well described and circulated

between hackers, we believe that information about new

attack methods must be constantly surveyed and new counter

measures should be developed. So, in future, I will try to

develop the technique by making it capable for other

varieties of SQL Injection Attacks also. Due to which, this

technique will be able to prevent SQL Injection Attack

totally.

VII ACKNOWLEDGMENT

 I am sincerely thankful to Prof. Sunita Gond from

B.U.I.T, Barkatullah University, Bhopal (M.P), for her kind

support and guidance.

VIII REFERENCES

[1] Priyanka, Vijay Kumar Bohat,” Detection of SQL Injection Attack

and Various Prevention Strategies”, International Journal of Engineering

and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-4, April

2013

[2]Sonam Panda, 1 Ramani S2, “Protection of Web Application against

Sql Injection Attacks”, International Journal of Modern Engineering

Research (IJMER) Vol.3, Issue.1, Jan-Feb. 2013 pp-166-168 ISSN: 2249-

6645

[3]Mihir Gandhi, JwalantBaria,s “SQL INJECTION Attacks in Web

Application”International Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-2, Issue-6, January 2013

[4]By Mayank Namdev*, Fehreen Hasan, Gaurav Shrivastav “Review of

SQL Injection Attack and Proposed Method for Detection and Prevention

of SQLIA”Volume 2, Issue 7, July 2012.

[5]Shubham Srivastava1, Rajeev Ranjan Kumar Tripathi, “Attacks Due

to SQL Injection & Their Prevention Method for Web-Application ”,

(IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 3 (2) , 2012,3615-3618

[6] IndraniBalasundaram,E.Ramaraj,”An Authentication Scheme for

Preventing SQL injection Attack using Hybrid Encryption” (ISSN 1450-

216,2011, Vol.53,pp.359-368.

 [7]AtefehTajpour et al. “Evaluation of SQL Injection Detection and

Prevention Techniques” Second International Conference on

Computational Intelligence, 2010.

[8]Shaukat Ali, Azhar Rauf, Huma Javed,” SQLIPA: An Authentication

Mechanism Against SQL Injection”, European Journal of Scientific

Research ISSN 1450-216X Vol.38 No.4 (2009), pp 604-611

[9]Sayyed Mohammad Sadegh Sajjadi and Bahare Tajalli Pour, “Study

of SQL Injection Attacks and Countermeasures”, International Journal

of Computer and Communication Engineering, Vol. 2, No. 5,

September 2013

[10] W. G. Halfond, J. Viegas, and A. Orso , “A Classification of SQL

Injection Attacks and Countermeasures,” in Proc. the International

Symposium on Secure Software Engineering 2006.

[11] The Open Web Application Security Project, OWAP TOP 10

Projects. [Online]. Available: http://www.owasp.org/

BIOGRAPHIES

Neha Mishra received the B.E. degree in Computer Science,

in 2007; and pursuing M-Tech. degree in Information

Technology, from B.U.I.T, Barkatullah University Bhopal

(M.P). She worked as an Assistant Professor in Computer

Engineering Branch in JSPM, ICOER Wagholi, Pune. Her

current research interests include Network Security.

http://www.owasp.org/

