
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3959

CPU and Memory Based Cluster Load

Balancing for Jobs with Bursts of Loads

D. VIJAYA KRISHNA
1
, G. SANTHOSH

2
, Dr. P. SAMMULAL

3

Department of Computer Science and Engineering, JNTUH College of Engineering, Jagtial, India
 1

Department of Computer Science and Engineering, JNTUH College of Engineering, Jagtial, India
 2

Department of Computer Science and Engineering, JNTUH College of Engineering, Jagtial, India
 3

Abstract--High performance computing is possible through cluster computing where load is shared by a pool of networked

servers. The cluster computing can serve jobs which are memory and CPU-intensive in batch processing model. Existing

systems focused on balancing CPU loads ignoring page faults and I/O operations. Recently Xiao et al. explored policies to

share loads that also consider memory usage in addition to load balancing in clusters. The policies can withstand

predictable and unpredictable bursts in demands. In this paper we implement those policies and perform trace-driven

simulations. The empirical results revealed that the proposed system is capable of capturing dynamic memory access

patterns in the presence of uncertain workloads. Thus the policies are able to improve the performance in terms of

execution of jobs by optimally utilizing memory and CPU resources.

Index Terms – Cluster computing, load balancing, uncertain workloads, trace-driven simulations

I. INTRODUCTION

In this paper we considered a set of servers that work

together in the form of a cluster. As part of cluster

computing we consider the problem of load balancing in the

presence of unpredictable workloads in terms of memory

access patterns and CPU usage. The aim of the paper is to

provide high-performance computing for jobs which are

CPU and memory intensive. Using distributed resources

such as memory, CPU, I/Os and so on, we implement load

sharing policies that improve overall performance of the

clusters in terms of load balancing and improving

throughput of the network. Many existing load balancing

schemes focused on CPU only [1], [2], [3], [4], [5], [6], and

[15]. Moreover these schemes assume that the participant

servers in the cluster have sufficient memory available.

These schemes improved the performance of the clusters in

terms of load balancing. With rapid development in CPU

chips and other technologies, there are fewer problems with

CPU but memory problem has to be focused. The memory

related issues are ignored in existing systems.

In this paper our main focus in both on CPU and also

memory access patterns. This is because the speed of

processors dramatically increased with technologies like

RISC and VLSI technologies. Therefore there is speed gap

between the RAM and processor. When jobs are executed in

distributed environment in clusters, it is essential now to

consider memory as it has lagged behind in development

when the new technologies are considered with respect to

improving CPU speed. Memory access is very important for

every application that runs in any operating environment.

The demand for data access is increased dramatically so as

to serve information needs of the people. The rapid growth

of networking and Internet also contributed to this factor.

Page faults are the common problem being witnessed.

Memory miss latency is more than 1000 times when

compared to memory hit [7], [8]. Therefore it is very

important to minimize the page faults. This can be achieved

by balancing memory usage along with CPU load balancing.

When any node’s memory is not in use, its memory is used

by other nodes to balance load. This kind of requirement is

actually the need of the hour.

In this paper we implement load sharing policies that

focused on both CPU load balancing and also balancing of

memory access patterns in order to improve the performance

of execution of jobs in the clusters. The overall throughput

of the network is dramatically improved with this

consideration. The rest of the paper is structured as follows.

Section II reviews literature which is relevant to load

balancing in clusters. Section III provides the proposed load

balancing policies. Section IV presents the experimental

results while section V concludes the paper.

II. RELATED WORKS

Apart from load balancing in terms of CPU, there are related

works that focused on memory resource for load balancing

[9], [10], [11], and [12]. The early study made in [1] shows

that memory of nodes that are not idle is used for load

balancing. However, when compared with CPU based

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3960

polices, this study could not prove effective as the CPU

cycles were costly when compared to memory that time.

However, the rapid pace in which the CPU technologies

grow later pushed the memory resource to lag behind. This

is the reason why there is the need for the balancing the

usage of memory as well. To attempt page faults overhead,

global memory concept is used in [13], and [10]. They used

remote paging techniques in order to achieve global memory

concept. DoDo [12] was introduced in order to improve

throughput of clusters by using memory efficiently. The

global memory is actually is in the local systems. The

memory which is present in all the participating nodes in the

cluster becomes global memory that cluster. When the

memory which if free is greater than certain threshold, it is

considered for load balancing [11]. In this paper instead of

considering only memory, we consider both CPU and

memory both for load balancing which improves

performance of the network.

In this paper we focus on the problem of predictable

memory access and also unpredictable memory access

patterns. In other words our study focused on the load

sharing with unknown memory demands. In order to achieve

load balancing in such scenarios, we implemented load

sharing schemes that made use of both CPU and memory

which is globally available for load balancing.

III. PROPOSED LOAD BALANCING POLICIES

The proposed load balancing policies are aimed at

improving the overall performance of the clusters in terms of

processing or executing jobs effectively. We consider the

problem of unknown workloads that cause problems in

processing. It does lower the throughput of the network. To

overcome this problem we consider both the CPU and

memory sharing globally so as to improve the execution

process in the cluster. We are making the following

assumptions.

 Global load index is maintained by each node in the

cluster. This information gets updated periodically.

 The load balancing scheme determines the node

that has to process the jobs.

 During job executions, the page faults are

uniformly distributed.

 The memory load of given job is 40% of the

memory that has been requested for the job.

We use the load index available at each node for load

balancing in terms of CPU usage and also the memory

usage. The load index is computed as follows.

Where j represents a node. RAMj represents the amount of

available RAM on given node. MLj represents the memory

load out of the total memory.

CPU Based Load Sharing

In each node of the cluster, the load index indicates the

length of CPU waiting queue Lj. Each CPU has its threshold

represented as CTj which is the maximum number of jobs.

The CPU threshold is verified every time when request is

made and decision is made to make use of this node or not.

If this node does not the satisfy the condition Lj < CTj the

load is balanced by considering a remote node which

satisfies the condition as it has less load in terms of CPU.

Memory Based Load Balancing

We do not use Lj. Instead we use memory load in order to

represent load index (MLj). For every request that arrives a

condition is verified that is MLj<RAMj. If the condition is

satisfied, the job gets executed in the local node otherwise it

is balanced by giving it to a remote node that can satisfy the

condition. Here is an important point considered. The

memory based load balancing is used when there is no

sufficient memory. When the memory is very sufficient then

it is ignored and CPU based load balancing is applied. Load

sharing is done with unknown memory demands also. This

is achieved by analyzing workload traces. We also use a

page faults model in order to characterize it in the solution.

The paging rate model is computed as follows.

Memory Centric Load Sharing Scheme

While the load sharing system is on, the following algorithm

is executed in order to achieve memory centric load sharing.

Fig. 1 – Memory centric load sharing

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3961

As can be seen in figure 1, the memory centric load sharing

mechanism performs load balancing based on the threshold

and condition explored earlier. When the workloads exceed

thresholds with respect to page fault rate based, working set

size based, age based, and CPU memory or I/O based

decisions are made accordingly to balance load to maximize

throughput of the network. More technical details can be

found in [14].

Workload Traces

Workload traces are collected from the datasets provided by

Los Alamos National Lab. The traces contain details like

number of requests, nodes, load of the nodes in terms of

memory and CPU, the available resources in the nodes of

cluster and so on. With respect to jobs, the trace contains

arrival time, arrival node, requested memory size, requested

CPU time.

IV. EXPERIMENTAL RESULTS

The trace based experiments are made in order to test the

efficiency of the proposed sharing policies. The experiments

are made in terms of average page fault rate, paging time

reduction, memory threshold, paging time, memory

threshold vs. migration time, and memory threshold vs.

queuing time.

Fig. 2 – Average page fault rate vs. mean showdown (May

trace)

As can be seen in figure 2, it shows the average fault rate

and mean show down for load balancing policies like CPU,

MEM, CPU_MEM_HP and CPU_MEM_HT for May trace.

Fig. 3 – Average page fault rate vs. mean show down (June

trace)

As can be seen in figure 3, it shows the average fault rate

and mean show down for load balancing policies like CPU,

MEM, CPU_MEM_HP and CPU_MEM_HT for June trace.

Fig. 4 – Average page fault rate vs. mean showdown (July

trace)

As can be seen in figure 4, it shows the average fault rate

and mean show down for load balancing policies like CPU,

MEM, CPU_MEM_HP and CPU_MEM_HT for July trace.

Fig. 5 – Average page fault rate vs. mean showdown

(August trace)

0

50

100

150

200

1 2 3 4 5

M
e

an
 S

lo
w

d
o

w
n

Average Page fault rate

CPU

MEM

CPU_MEM
_HP

CPU_MEM
_HT

0

100

200

300

400

500

600

1 2 3 4 5

M
e

an
 S

lo
w

d
o

w
n

Average Page Fault rate

CPU

MEM

CPU_MEM_
HP

CPU_MEM_
HT

0

50

100

150

200

250

300

1 2 3 4 5

M
e

an
 S

lo
w

d
o

w
n

Average Page Faults Rate

CPU

MEM

CPU_MEM_H
P
CPU_MEM_H
T

0

50

100

150

200

1 2 3 4 5 6 7

M
e

an
 S

lo
w

d
o

w
n

Aerage Page Faults Rate

CPU

MEM

CPU_MEM_
HP

CPU_MEM_
HT

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3962

As can be seen in figure 2, it shows the average fault rate

and mean show down for load balancing policies like CPU,

MEM, CPU_MEM_HP and CPU_MEM_HT for August

trace.

Fig. 6 – Paging time reduction

As can be seen in figure 6, it shows the paging time

reduction percentage for load balancing policies like MEM,

CPU_MEM_HP and CPU_MEM_HT.

Fig. 7 – Queuing time reduction

As can be seen in figure 7, it shows the queuing time

reduction percentage for load balancing policies like MEM,

CPU_MEM_HP and CPU_MEM_HT.

Fig. 8 – Memory threshold vs. slowdown

As can be seen in figure 8, it shows the memory threshold

and slowdowns with attributes such as age, pf-rate, work

size, and combined.

Fig. 9 – Memory threshold vs. paging time

As can be seen in figure 9, it shows the memory threshold

and paging time with attributes such as age, pf-rate, work

size, and combined.

Fig. 10 – Memory threshold vs. migration time

As can be seen in figure 10, it shows the memory threshold

and migration time with attributes such as age, pf-rate, work

size, and combined.

Fig. 11 – Memory threshold vs. queuing time

0
5

10
15
20
25
30

P
ag

in
g

Ti
m

e

R
e

d
u

ct
io

n
(%

)

MEM

CPU_MEM_HP

CPU_MEM_HT

0
10
20
30
40
50

Q
u

e
u

in
g

Ti
m

e

R
e

d
u

ct
io

n
(%

)

MEM

CPU_MEM_HP

CPU_MEM_HT

0

2

4

6

8

10

12

14

-15% -5% 0% 5% 15%

Sl
o

w
d

o
w

n
s

Memory Threshold

age

pf-rate

worksize

combined

0

50

100

150

200

250

300

350

-15% -5% 0% 15% 5%

P
ag

in
g

Ti
m

e
(s

)

Memory Threshold

age

pf-rate

worksize

combined

0

20000

40000

60000

80000

100000

-15% -5% 0% 5% 15%

M
ig

ra
ti

o
n

 T
im

e
s(

s)

Memory Threshold

age

pf-rate

worksize

combined

0

200000

400000

600000

800000

1000000

-15% -5% 0% 5% 15%

Q
u

e
u

in
g

Ti
m

e
s(

s)

Memory Threshold

age

pf-rate

worksize

combined

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3963

As can be seen in figure 8, it shows the memory threshold

and queuing time with attributes such as age, pf-rate, work

size, and combined.

V. CONCLUSIONS

In this paper we focused on the improving the performance

of clusters by optimally balancing memory and CPU

resources. To achieve this we implemented various load

sharing policies. We assume that jobs are uncertain. It does

mean there are known and unknown demands with respect to

jobs execution. Unless the workload is balanced, the cluster

computing cannot improve performance. Our sharing

policies consider both CPU and memory resources to

balance the load. As there are unknown memory demands

and unpredictable memory access patterns, our policies

optimize the usage of CPU and memory resources and

balance load for improving jobs execution performance of

clusters. We tested our sharing policies with trace-based

simulations. The empirical results reveal the effectiveness of

the proposed solution.

REFERENCES

[1] T.Kunz, “The influence of Different workload Descriptions on a
heuristic Load balancing scheme,” IEEE Trans. Software Eng., vol. 17, no.

7, pp.725-730, 1991.

[2] C.-C. Hui and S.T.Chanson, “Improved Strategies for Dynamic Load
Sharing, “ IEEE Concurrency., vol. 7, no. 3, pp.58-67, 1999.

[3] M.Harchol-Balter and A.B.Downey,” Exploting Process Lifetime

Distributions for Dynamic Load Balancing,” ACM Trans. Computer
Systems, vol. 15, no. 3, pp.253-285, 1997.

[4] D.L.Eager, E.D.Lazowska and J.Zahorjan, “The Limited Performance

Benfits of Migrating Active Processes for Load Sharing, “Proc.ACM
SIGMETRICS Conf.Measuring and Modeling of Computer Systems, pp.63-

72, May 1988.

[5] X.Du and X.Zhang, “Coordinating Parallel Process on Networks of
Workstations,”J.Parallel and Distributed Computing, vol. 46, no. 2, pp.125-135, 1997.

[6] F.Douglis and J.Ousterhout,”Transparent Process Migration: Design

alternatives and the Sprite Implementation,” Software Practice and
Experience, vol. 21, no. 8, pp.757-785, 1991.

[7] M.D.Flouris and E.P.Markatos, “Network RAM,” High Performance

Cluster Computing, Chapter 16, R.Buyya, ed., vol.1, pp.383-508, New
Jersey: Prentice Hall 1999.

[8] J.L.Hennessy and D.A. Patterson, Computer Architecture: A Quantative

Approach, second ed., Morgan Kuaffman, 1996.
[9] E.P.Markatos and G.Dramitinos, “ Implementation of a Reliable Remote

Memory Pager,” Proc.1996 Usenix Technical Conf., pp177-190, Jan.1996.

[10] M.J.Feeley et al., “ Implementing Global Memory Management
Systems,” Proc. 15th ACM Symp. Operating System Principles, pp.201-212,

Dec.1995.
[11] A.Barak and A.Braverman, “ Memory Ushering in a Scalable

Computing Cluster,” J.Microprocessors and Microsystems, vol.22,No.3-4,

pp.175-182, Aug.1998.

[12] A.Achraya and S.Setia, “Availability and Utility of Idle Memory in

Workstations Cluster,” Proc. ACM SIGMETRICS Conf. Measuring and
Modeling of Computer Systems, pp.35-46, May 1999.

[13] G.M.Voelker, H.A.Jamrozik, M.K.Vernon, H.M.Levy and

E.D.Lazowska, “Managing Server Load in Global Memory Systems ,“
Proc. ACM SIGMETRICS Conf. Measuring and Modeling of Computer

Systems, pp.127-138, May 1997.

[[14] Li Xiao, Songqing Chen and Xiaodong Zhang, “ Dynamic Cluster
Resource Allocations for Jobs with Known and Unknown Memory

Demands,” IEEE Transactions on Parallel and Distributed Systems, Vol.13,

No.3, March 2002.
[15] D. Vijaya Krishna and Dr. P. Sammulal, “Advances in Parallel

computing from the past to the future”, International journal of advanced

research in computer science and management studies, Vol.1, Issue.4,
September 2013.

BIOGRAPHIES

Dandanayakula Vijaya Krishna, He

completed M.Tech (CSE) in JNTUH

College of Engineering, Jagtial, INDIA.

He has received B.Tech degree in

Computer Science and engineering. His

main research interest includes Cluster

Computing, Remote Sensing.

Gajarla Santhosh, He completed

M.Tech (CSE) in JNTUH College of

Engineering, Jagtial, INDIA. He has

received B.Tech degree in Information

Technology. His main research interest

includes Image Processing and Cluster

Computing.

Dr. P Sammulal, He did his PhD

(Computer Science and Engineering)

from Osmania University, Hyderabad,

India. He has received the B.E degree in

2002. He is in teaching and research

since 2002. He has published 30 papers

in International conferences/journals.

His main research interest includes Parallel, Distributed,

Cluster, Grid Computing concepts. He is working as an

Assistant Professor in JNTUH College of Engineering

(JNTUH University), Jagtial, INDIA.

