
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3993

An advanced tracing mechanism for optimum

debugging support for soc’s

S.Thripurna
1
, Ms.G.Renuka

2
, Dr.Syed mushtak Ahmed

3

PG Student, Dept. of Electronics and Communication Engineering, SR Engineering College, India
1

Assistant Professor, PG Student, Dept. of Electronics and Communication Engineering, SR Engineering College, India
2

Professor & H.O.D, Dept. of Electronics and Communication Engineering, SR Engineering College, India
3

Abstract: AMBA (Advanced Microcontroller based Bus Architecture) consists of AHB, APB, ASB and AXI. In this

project we are Tracing AHB (Advanced High performance Bus) signals with Real time Compression and

Multiresolution Techniques. A simple transaction on the AHB consists of an address phase and a subsequent data

phase. Access to the target device is controlled through a MUX , thereby admitting bus-access to one bus-master at a

time. In AHB Tracer we have to Trace Address signals, Data signals and Control signals the have to compress them

depending on AHB protocols. A multiresolution AHB on-chip bus tracer is named as SYS_HMRBT (AHB

Multiresolution Bus Tracer) and is used monitoring. By using this SYS_HMRBT, we can achieve 79%-96% of

compression depending on selected resolution mode.

Keywords: AHB, AMBA, compression, multiresolution, post-T trace, real time trace.

I.INTRODUCTION

 In the present scenarioWith the deep submicron

process technology matures, IC chip scale is more and

more big. Digital IC based on the timing of the design

method, driven to the design method based on IP reuse,

and in the SOC design can be widely used. Based on IP

reuse in the SoC design, chip bus design is the most

critical problem. Therefore, the industries there are many

chip bus standards. Among them, the company launched

by ARM on-chip AMBA was broad IP bus aggregator of

developers and the favor of SoC system, has become a

popular industry standard chip structure. AMBA

specification mainly includes AHB (on the High

performance Bus) system Bus and APB (Peripheral Bus)

on the periphery Bus

AHB mainly used for high-performance module (such as

CPU, the DMA and DSP, etc.), as the connection between

the SoC framework10 chip system bus, it includes the

following some properties: a single clock edges operating;

The three states realization ways; Support sudden

transmission; Support subsection transmission; Support

multiple main controller; Configurable 32-bit ~ 128-bit

bus width; Support bytes, half bytes and word

transmission. From the main module, AHB system from

module and Infrastructure (Infrastructure) 3 parts, the

whole AHB bus by the main module transfers from

module issued, responsible for the response.

An AMBA-based microcontroller typically consists of a

high-performance system backbone bus, able to sustain the

external memory bandwidth, on which the CPU and other

Direct Memory Access (DMA) devices reside, plus a

bridge to a narrower APB bus on which the lower

bandwidth peripheral devices are located. Figure1 shows

both AHB and APB in a typical AMBA system.

 Figure1: A typical AMBA AHB-based system

Most hang on a bus module (including processors) just a

single attribute function modules: main modules, or from

module. The main module is to send the operation from

module reading, such as CPU, DSP module; from module

is to accept orders and respond module, such as chip

RAM, AHB/APB Bridge, etc. In addition, some module

and has two properties, such as direct memory access

http://en.wikipedia.org/wiki/MUX

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3994

(DMA) were from module, but when programming in

system must read data transmission is main modules. If the

bus exist multiple main modules, they need to decide how

to control the arbitration device module of main kinds of

bus access. Although arbitration standard is part of the

bus, regulating AMBA but specific use a algorithm

Engineers decided by RTL design, two of them the most

commonly used algorithm is fixed priority algorithm and

round robin algorithm. Basic structure is composed of

arbitration device (arbiter), the main module to the many

way from module, from the main module into how way,

decoder (decoder), virtual from module (dummy Slave),

virtual main module (dummy Master) together.

Maximum AHB bus has 16 main modules and multiple

from module, if the main module number more than 16, it

is required to add a layer of structure (specific refer to

ARM the company launched the Multi – layer AHB

standard).APB bus APB bridge is the only, but also the

main module AHB system bus from module. Its main

function is to latch AHB system bus from the address, data

and control signals, and provide secondary decoding to

produce APB peripherals selection signal, so as

to realize the APB agreement AHB agreements to convert.

II. DESIGN AND IMPLEMENTATION

Figure3 is the bus tracer overview. It mainly contains four

parts: Event Generation Module, Abstraction Module,

Compression Modules, and Packing Module. Event

Generation Module controls the start/stop time, the trace

mode, and the trace depth of traces. This information is

sent to the following modules. Based on the trace mode,

the Abstraction Module abstracts the signals in both

timing dimension and signal dimension. The abstracted

data are further compressed by the Compression Module

to reduce the data size. Finally, the compressed results are

packed with proper headers and written to the trace

memory by the Packing Module.

Figure2: Multiresolution Bus Tracer Block Diagram

A. Event Generation Module:

The Event Generation Module decides the starting and

stopping of a trace and its trace mode. The module has

configurable event registers which specify the triggering

events on the bus and a corresponding matching circuit to

compare the bus activity with the events specified in the

event registers.

B. Abstraction Module:

 The Abstraction Module monitors the AMBA bus

and selects/filters signals based on the abstraction mode.

The abstraction level is in two dimensions: timing

abstraction and signal abstraction. At the timing

dimension, it has two abstraction levels, which are the

cycle level and transaction level.

Figure3; Multiresolution trace modes

Combining the abstraction levels in the timing dimension

and the signal dimension, we provide five modes in

different granularities, as Figure4.4 shows. They are Mode

FC (full signal, cycle level), Mode FT (full signal,

transaction level), Mode BC (bus state, cycle level), Mode

BT (bus state, transaction level), and Mode MT (master

state, transaction level).

C. Compression Module:

The purpose of the Compression Module is to reduce the

trace size. It accepts the signals from the abstraction

module. To achieve real-time compression, the

Compression Module is pipelined to increase the

performance. Every signal type has an appropriate

compression method. Although the Abstraction Module

can reduce the trace size, the remaining trace volume is

still very large. To reduce the size, the data compression

approaches are necessary. Since the signal characteristics

of the address value, the data value, and the control signals

are quite different, we propose different compression

approaches for them.

javascript:changelink('http://blogold.chinaunix.net/','ZH_CN2EN');

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3995

1. Program Address Compression: We divide the program

address compression into three phases for the spatial

locality and the temporal locality. Figure4 shows the

compression flow. There are two approaches:

branch/target filter, dictionary-based compression.

Figure4: Program address compression flow and trace format.

Branch/target filter technique aims at the spatial locality of

the program address. Spatial locality exists since the

program addresses are sequential mostly. Software

programs (in assembly level) are composed by a number

of basic blocks and the instructions in each basic block are

sequential. Because of these characteristics, Branch/target

filtering can records only the first instruction’s address

(Target) and the last instruction’s address (Branch) of a

basic block. The rest of the instructions are filtered since

they are sequential and predictable. The state diagram for

the Branch-Target Filtering is given in Figure5

Figure5: State Diagram for Branch/Target Filtering

Dictionary based compression circuit further reduce the

size, we take the advantage of the temporal locality.

Temporal locality exists since the basic blocks repeat

frequently (loop structure), which implies the branch and

target addresses after Phase 1 repeat frequently. Therefore,

we can use the dictionary-based compression. The idea is

to map the data to a table keeping frequently appeared

data, and record the table index instead of the data to

reduce size. Figure6 shows the hardware architecture. The

dictionary keeps the frequently appeared branch/target

addresses. To keep the hardware cost reasonable, the

proposed dictionary is implemented with a CAM-based

FIFO. When it is full, the new address will replace the

address at the first entry of FIFO. For each input datum

(dini), the comparator compares the datum with the data in

the dictionary (Table []). If the datum is not in the table

(match = Miss), the datum (uncompressed data) is written

into the table and also recorded in a trace. Otherwise

(match = Hit), the index (match index) of the hit table

entry is recorded instead of the datum.

Figure6: Block diagram of the dictionary-based compression circuit.

2. Data Address/Value Compression:

Figure7: Block diagram of differential compression circuit

Data address and data value tends to be irregular and

random. Therefore, there is no effective compression

approach for data address/value. Considering using

minimal hardware resources to achieve a good

compression ratio, we use a differential approach based on

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3996

the subtraction. Figure7 shows the hardware compressor.

The register REG saves the current datum dini and outputs

the previous datum dini-1. By comparing the current datum

with the previous data value, the three modules comp,

differential, and sizeof output the encoded results. The

comp module computes the sign bit (signed_bit) of the

difference value. The differential module calculates the

absolute difference value (value). Since the absolute

difference between two data value may be small, we can

neglect the leading zeros and use fewer digits to record it.

Therefore, the size of module calculates the nonzero digit

number (sizei) of the difference. Finally, the encoded

datum is sent to the packing module along with sizei.

For simple hardware implementation, the digit number of

an absolute difference is limited to four types, as Figure8

shows. The header indicates the data trace format. If the

difference is larger than 65535 (2
16

-1), the bus tracer

record the uncompressed full 32-bit data value. Otherwise,

the bus tracer uses 4-, 8-, or 16-bit length to record the

absolute differences, whichever is appropriate.

Figure8: Data address/value trace compression format.

3. Control Signal Compression:

We classify the AHB control signals into two groups:

access control signals (ACS) and protocol control signals

(PCS). ACS are signals about the data access aspect, such

as read/write, transfer size, and burst operations. PCS are

signals controlling the transfer behavior, such as master

request, transfer type, arbitration, and transfer response.

Control signals have two characteristics. First, the same

combinations of the control signals repeat frequently,

while other combinations happen rarely or never happen.

The reason is that many combinations do not make sense

in a SoC. It depends on the processor architecture, the

cache architecture, and the memory type. Therefore, the

IPs in a SoC tend to have only a few types of transfer

despite the bus protocol allows for many transfer

behaviors. Second, control signals change infrequently in a

transaction.

Because of these two characteristics, ACS/PCS are

suitable for dictionary-based compression. The idea is to

treat the signals in ACS/PCS as one group. Since the

variations of transfer types are not much and transfer types

repeat frequently, we can map them to the dictionary with

frequently transfer types to reduce size. For example, the

original size of ACS is 15 bits. If we use 3-bit to encode

the signal combinations of ACS, we can reduce trace size

by (1 – 3/15) * 100% = 80%. To simplify the hardware

design for cost consideration, this dictionary is also

implemented as a FIFO buffer. With this approach, the

dictionary adapts itself when the ACS/PCS behaviors

change.

D. Packing Module:

The Packing Module is the last phase. It receives the

compressed data from the compression module, processes

them, and writes them to the trace memory. It is

responsible for three jobs: packet management, circular

buffer management.

For packet management, since the compressed data length

and type are variable, every compressed data needs a

header for interpretation. Therefore, this step generates a

proper header and attaches it to each compressed datum.

In this paper, we call a compressed data with a header as

a packet. Since the header generation takes time, to avoid

long cycle time, the header generation is implemented in

one pipeline stage.

For circular buffer management, it manages the accesses

to the trace memory. Since the size of a packet is variable

but the data width of the trace memory is fixed, this

module collects the trace data in a first-input, first-output

(FIFO) buffer and outputs them to the trace memory until

the data size in the FIFO buffer is equal/larger than the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3997

data width. If the tracing stops and the data size in the

FIFO buffer is smaller than the data width, one additional

cycle is required to output the remaining data to the trace

memory.

III. EXPERIMENTAL RESULTS

A . Address Compression Result

Figure 9: Address Compression Simulation Result

B. Data Compression Result

Figure10: Data Compression Simulation Result

C. Control Compression Result

Figure11: Control Compression Simulation Result

D. Trace Memory Report

2500 trace_memory[1] 0000a000

2600 trace_memory[2] 0a0c0100

2700 trace_memory[3] 00060100

2900 trace_memory[4] 28300402

3000 trace_memory[5] 81c02000

3100 trace_memory[6] 00038080

3200 trace_memory[7] 141c0201

3300 trace_memory[8] 42e0100a

3400 trace_memory[9] 17008050

3500 trace_memory[9] 17008050

4400 trace_memory[11] 00200028

4500 trace_memory[12] 5c014000

4600 trace_memory[13] 2011ad15

4700 trace_memory[14] 78080288

4800 trace_memory[15] c0401440

4900 trace_memory[16] 0200a200

5000 trace_memory[17] f0000a20

5100 trace_memory[18] 01005100

5200 trace_memory[19] 08028800

5400 trace_memory[19] 08028800

5600 trace_memory[21] 7008000a

Trace Memory Result

IV. CONCLUSION

We have presented an on-chip bus tracer SYS-HMRBT

for the development, integration, debugging, monitoring,

and tuning of AHB-based SoC’s. It is attached to the on-

chip AHB bus and is capable of capturing and

compressing in real time the bus traces with five modes of

resolution. These modes could be dynamically switched

while tracing. The bus tracer also supports both directions

of traces: pre-T trace (trace before the triggering event)

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3998

and post-T trace (trace after the triggering event). In

addition, a graphical user interface, running on a host PC,

has been developed to configure the bus tracer and analyze

the captured traces. With the aforementioned features,

SYS-HMRBT supports a diverse range of

design/debugging/ monitoring activities, including module

development, chip integration, hardware/software

integration and debugging, system behavior monitoring,

system performance/power analysis and optimization, etc.

The users are allowed to tradeoff between trace granularity

and trace depth in order to make the most use of the on-

chip trace memory or I/O pins.

In the future, we would extend this work to more advanced

buses/connects such as AXI or OCP. In addition, with its

real time abstraction capability, we would like to explore

the possibility of bridging our bus tracer with ESL design

methodology for advanced hardware/software co

development/debugging/ monitoring/analysis, etc.

REFERENCES

[1]Infineon Technologies, Milipitas, CA, “TC1775 TriCore users manual

system units”
[2]ARM Ltd., San Jose, CA, “Embedded trace macrocell architecture

specification”

[3]ARM Ltd., San Jose, CA, “AMBA Specification (REV 2.0) ARM
IHI0011A”

[4]First Silicon Solutions (FS2) Inc., Sunnyvale, CA, “AMBA navigator

spec sheet”
[5] B. Tabara and K. Hashmi, “Transaction-level modeling and debug of

SoCs,” presented at the IP SoC Conf., France,Naveen Verma, A.P.

Chandrakasan.
[6]YANG et al.: On-Chip AHB Bus Tracer with Real-Time

Compression.

