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Abstract: Every organization stores a required data in the digital form. This data needs to be published due to the 

mutual benefits or due to the government rule. This data also has significant research value. While publishing a data in 

its original form, there is loss of privacy of the individual record. To avoid this, we can use ε -differential privacy. 

Dwork provides a simplest way to achieve this. But it does not work well with range count query. In this paper we have 

used Privelet+ method using array based implementation for wavelet transforms and Privelet* method. These methods 

show better result than the Dwork method for the range count queries.      
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I. INTRODUCTION 

Today every organization stores a required data in the 

digital form. For example, hospital stores data related with 

patients in digital form. This data needs to be published 

either due to mutual benefits or due to the government 

rule. For example, every licensed hospital in California is 

required to submit data related with the patient when 

patient gets discharge from the hospital [Carlisle, et al. 

(2007)]. This data includes sensitive information related 

with individual. If we publish this data in its original form, 

it violets the privacy of individual. Methods that deal with 

this problem are known as Privacy Preserving Data 

Publishing Techniques [Fung B.C.M, et al. (2010)]. These 

techniques publish data in such a way that published data 

remains practically useful while individual privacy is 

preserved. One of the methods for privacy preserving data 

publishing technique is ε -differential privacy [Dwork C., 

et. al. (2006)]. This method says, a randomized algorithm 

G satisfies ε-differential privacy, if 1) for any two tables 

T1 and T2 that differ only in one tuple, and 2) for any 

output O of G, we have Pr{G(T1) =O} ≤ e
ε 
 Pr{G(T2)= O} 

Simplest method to achieve a ε-differential privacy is 

provided by Dwork [Dwork C., et. al. (2006)]. This 

method first computes the frequency distribution of the 

tuples in the input data and then publish a noisy version of 

the distribution by adding the noise of (1) variance to 

each entry. The noisy frequency matrix preserves privacy, 

as it conceals the exact data distribution. In addition, the 

matrix can provide approximate results for all range 

queries. But this method fails to provide useful results. In 

particular, for a count query answered by taking the sum 

of a constant fraction of the entries in the noisy frequency  

 

 

matrix, the approximate query result has a (m) noise 

variance, where m denotes the total number of entries in  

the matrix and m is typically an enormous number, as 

practical data sets often contain multiple attributes with 

large domains.  

To deal with this problem we have implemented Privelet+ 

method [Xiaokui Xiao, et al. (2011)] and Privelet* method 

[Xiaokui Xiao, et al. (2011)]. But while implementation 

we have used array based implementation for wavelet 

transforms rather than tree based implementation. This 

method provides more accurate range count query answers 

than the Dwork’s method.  

II. PROBLEM STATEMENT 

Suppose we want to publish a table that T with A1,A2,..,An 

domains. In this, we try to optimize the range count query 

of the form  

SELECT COUNT (*) FROM T 

WHERE A1S1 AND A2S2 AND,..,AnSn 

S1,S2..Sn are intervals defined on domain A1,A2...An 

III. PROPOSED STRUCTURE 

A. Privelet+ method 

Privelet+ technique takes three inputs from the user. First 

input is table that we want to publish. Second is error 

magnitude that we want to add in published data and third 

is attribute list for further processing. This algorithm 

works in following different steps: 

Step 1) Calculating frequency matrix: 
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For the input table, we need to calculate the frequency 

matrix on one of the attribute. It computes the frequency 

distribution of the tuples in the input data. For example, 

suppose we want to publish following patient table having 

attributes as Patient Name, Patient Address, Patient Job, 

Patient Status and Patient Age. Patient Status specifies 

whether the person is suffering from diabetes or not.  

Table I. Medical Data 

Patient 

Name 

Patient 

Address 

Patient  

Job 

Patient 

Status 

Patient 

Age 

Yogesh 

Laga 

Pune Teacher Yes 41 

Arnika 

Shetti 

Pune Doctor Yes 42 

Dhiraj 

Kumar 

Pune Doctor No 43 

Amol 

Teke 

Pune Teacher No 41 

Sandip 

Todakar 

Pune Teacher No 44 

Ashvini 

Prasoon 

Pune Doctor No 43 

The frequency matrix on Patient age for the above table 

can be given as, 

Table II. Frequency Matrix 

Age Yes No 

41 1 1 

42 1 0 

43 0 2 

44 0 1 

This can be calculated in java with following sudocode 

ArrayList frequencyage=new ArrayList(); 

while (for each record){  

 if(!frequencyage.contains(age)){ 

  frequencyage.add(age);   

  // update fredata, Yfredata and Nfredata with 

count as one 

 } 

 if(frequencyage.contains(age)){ 

  //get the current count   

  // increment count by one 

  // update fredata, Yfredata or Nfredata 

} 

Step 2) Generating Submtrices: 

In this step, the frequency matrix is divided into the 

number of submatrix based on the user’s input.  Each 

submatrix must have the same number of coordinates 

calculated based on attribute list input. 

For example given the frequency matrix in Table II, if 

attribute list contains only the “Has Diabetes?” dimension, 

then the matrix would be split into two submatrices, one of 

which contains a column age and yes as attributes and 

other contains age and no.  

Step 3) Calculate the wavelet coefficient: 

In this step, wavelets are calculated for each submatrix. 

For calculating wavelets, HAAR wavelet (HW) technique 

is used. These wavelets are generated by using an array. 

First all the elements of submatrix are placed into the 

array. Number of the elements must be equal to power of 

two. If this condition is not satisfied, we have to add 

dummy values. This array is copied into another array say 

copiedarray. The first wavelet coefficient is generated by 

taking the average of all the values known as base wavelet 

coefficient. The procedure to calculate remaining HAAR 

wavelet coefficients of an array of n samples is as follows 

(1) Find the average of each pair of samples.(n/2) 

(2) Find the difference between each average and the 

samples it was calculated form.(n/2) 

(3) Fill the first half of the array with averages 

(4) Fill the second half of the array with differences. 

(5) Repeat the process on the first half of the array until 

n=1. 

(6) Finally append the contents of copiedarray array to the 

newly created array. 

Step 4) Calculating error and adding error in wavelet 

coefficient: 

In this step we calculate the error for each wavelet 

coefficient based on its position in the array and then we 

add this calculated error in original wavelet coefficient to 

generate erroneous wavelet coefficients. Amount of error 

added in wavelet coefficient is given by (error magnitude)/ 

(weight of wavelet coefficient). Error magnitude is input 

taken from the user and the weight of wavelet coefficient 

can be calculated as follows. 

For the base coefficient the weight is equal to the number 

of rows in the frequency matrix. For the other wavelet 

coefficient weight is 2
l-i+1

, where l is log(size of the 

array+1)/ log(2) and i is the position of the node in the 

array. This position can be calculated for every element of 

array except contents of appended copiedarray by 

following sudocode. 

int p=0; 

int y=1; 

for(every index) 

//calculate minvalue that is tow’s power p minus one 

//calculate maxvalue that is tow’s power q minus one  

if(minvalue<=index && maxvalue>=index){ 

 current_position=y; 

//calculate currentcost that is tow’s power 

current_position 

 if((currentcost-2)==index){ 

  p=p+1; 
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  y=y+1; 

 } 

} 

} 

Step 5) Reconstruction of submatrices and assembling of 

submatrices: 

This step calculates the submatrices from the erroneous 

wavelet coefficients and assembles them in order to build 

the new frequency matrix. This new frequency matrix is 

nothing but the data to be published. For every index of 

non-changed appended part of the array, calculation is 

made in the following way to generate new values.  

for every index of non-changed appended array  

parent_index=index/2 

while(parent_index > 0) 

if(index%2==0){ 

 add the value at index to sum 

 index=parent_index 

 parent_index=parent_index/2 

} 

else{ 

 substract the value at index from sum 

 index=parent_index 

 parent_index=parent_index/2 

} 

add the sum to base coefficient 

Due to the above code we will get the published data for 

single submatrix. This procedure is applied to every 

submatrix. Combine these submatrices to built final 

published table. 

B. Privelet+ with heuristic noise reduction 

Due to the sparseness of the natural data, large number of 

the entries in the frequency matrix may be zero. Also the 

correlation is exists in the attribute. Due to this correlation 

adjacent entries in the frequency matrix are close to each 

other. For example, adjacent entries along the disease 

dimension of the frequency matrix might not differ much, 

since people with similar ages are often equally 

susceptible to the same disease. For these types of the 

frequency matrices, wavelet coefficients would be small 

and close to zero. We are adding small error. The resulting 

value is again a small number. This may suppress the 

original aim of providing privacy to the data. In order to 

deal with this problem we have add heuristic noise 

reduction to privelet+ to create privelet*. 

We apply a soft-thresholding techniques based on the θ 

[Xiaokui Xiao, et al. (2011)]. Soft-thresholding transforms 

each noisy wavelet coefficient c* using a function ns as 

follows. 

ns(c*,θ)  = c* - θ,    if c* > θ, 

 = c* + θ,   if c*<θ, 

 = 0,           otherwise. 

For calculation of θ we use the following CompThresh 

algorithm 

Algorithm CompThresh (S,) 

1 .  

2. Sort the noisy coefficient in descending order 

3. Store the sorted sequence in an array x 

4. For any i  [1,|S|] let  and 

 
5. Perform a linear scan on x to compute i and i for all 

the i  [a,|S|] 

6. for i=|S| to 1 

7. compute the  that satisfies the following 

equation 

 i – 2 i. + i. 2=(|S|-1).2 

8. if i=|S| and 0    x[|S|] or i<|S| and x[i] <   

x[i+1] 

  return  

9. return =x[1] 

CompThresh first estimates the variance 
2
 of the noise-

free coefficients. After that, CompThresh sorts all 

coefficients in descending order, and stores the sorted 

sequence in an array X. Next, CompThresh performs a 

linear scan on X, and computes the following two values 

for each i  [1; |S|] 

1.   

2.   

Value of the θ can be calculated by following formula, 

i – 2 i. + i. 
2
= (|S|-1).

2
 

Given X, i, and i (i  [1; |S|]), CompThresh computes 

and returns the desired threshold  and then apply the soft 

thresholding on noisy wavelets. 

IV. EXPERIMENTS 

We have implemented a system in java to publish patient 

database. For this system we have used a patient data set 

having attributes as Patient Name, Patient Address, Patient 

Status and Patient Age. This data set includes approximate 

10000 records. On this data set we apply Privelet+ method 

and Privelet* method to calculate answer for the range 

count query. User enters the error magnitude and selects 

the attribute list. Then system calculates the published 

data. This system also measures the average absolute 

error, root mean squared error and maximum absolute 

error induced in the system. 

The following graph is ranges vs. range count query 

answer graph. From this graph we can conclude that the 

error added due to the privelet+ method is less than old 

method (Dwork’s method) for range count query answer. 

Privelet* method provide more accurate results than both 

these method. 
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Figure 1 Range Count Query Result 

The quality of each approximate answer of range count 

query is gauged by its absolute error and relative error 

with respect to the actual query result. The absolute error 

of X is defined as |X-act| and relative error of X is 

computed as |X-act|/max{act,s};  where s is sanity bound 

that mitigates the effects of queries with excessively small 

selectivities. We set s as 0.1 percent of the number of 

tuples in the data set. We measure the absolute error and 

relative error across the coverage and selectivity of the 

query respectively. Selectivity of query q is the fraction of 

tuples in the data set that satisfy all predicated in q and 

coverage of q is the fraction of entries in the frequency 

matrix that are covered by q. 

The following graph shows the average absolute error 

incurred in answering each query. The X-axes of the graph 

represents the coverage of the query. The graph is for 

PStatus as no and the ɛ as 0.50. 

 
Figure 2 Average Absolute Error vs. Coverage 

The following figure shows the average relative error 

incurred in answering each query. The X-axes of the graph 

represents the selectivity of the query. The graph is for 

PStatus as no and the ɛ as 0.50. 

 

 
Figure 3 Average Relative Error vs. Selectivity 

 
From the above figures we can conclude that amount of 

error added in privelet* method is less than privelet+ and 

old method. Privelet* provides more accurate results than 

other two methods. 

V. CONCLUSION 

Privelet+ and Privelet* methods are data publishing 

techniques. Privelet+ and Privelet* methods provide 

improved results over a range count query applied. 

Experimental results provide the effectiveness of the 

Privelet+ method and privelet* method. 
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