
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 4081

PATIENT DATA SET PUBLICATION

THROUGH DIFFERENTIAL PRIVACY VIA

WAVELET TRANSFORMS

Mr. P.M.GAVALI
1
, Prof. P.C.BHASKAR

2

Computer Science and Technology, Shivaji University, Kolhapur, Maharashtra, India
1

Computer Science and Technology, Shivaji University, Kolhapur, Maharashtra, India
2

Abstract: Every organization stores a required data in the digital form. This data needs to be published due to the

mutual benefits or due to the government rule. This data also has significant research value. While publishing a data in

its original form, there is loss of privacy of the individual record. To avoid this, we can use ε -differential privacy.

Dwork provides a simplest way to achieve this. But it does not work well with range count query. In this paper we have

used Privelet+ method using array based implementation for wavelet transforms and Privelet* method. These methods

show better result than the Dwork method for the range count queries.

Keywords Data Publication, Wavelet Transforms

I. INTRODUCTION

Today every organization stores a required data in the

digital form. For example, hospital stores data related with

patients in digital form. This data needs to be published

either due to mutual benefits or due to the government

rule. For example, every licensed hospital in California is

required to submit data related with the patient when

patient gets discharge from the hospital [Carlisle, et al.

(2007)]. This data includes sensitive information related

with individual. If we publish this data in its original form,

it violets the privacy of individual. Methods that deal with

this problem are known as Privacy Preserving Data

Publishing Techniques [Fung B.C.M, et al. (2010)]. These

techniques publish data in such a way that published data

remains practically useful while individual privacy is

preserved. One of the methods for privacy preserving data

publishing technique is ε -differential privacy [Dwork C.,

et. al. (2006)]. This method says, a randomized algorithm

G satisfies ε-differential privacy, if 1) for any two tables

T1 and T2 that differ only in one tuple, and 2) for any

output O of G, we have Pr{G(T1) =O} ≤ e
ε
 Pr{G(T2)= O}

Simplest method to achieve a ε-differential privacy is

provided by Dwork [Dwork C., et. al. (2006)]. This

method first computes the frequency distribution of the

tuples in the input data and then publish a noisy version of

the distribution by adding the noise of (1) variance to

each entry. The noisy frequency matrix preserves privacy,

as it conceals the exact data distribution. In addition, the

matrix can provide approximate results for all range

queries. But this method fails to provide useful results. In

particular, for a count query answered by taking the sum

of a constant fraction of the entries in the noisy frequency

matrix, the approximate query result has a (m) noise

variance, where m denotes the total number of entries in

the matrix and m is typically an enormous number, as

practical data sets often contain multiple attributes with

large domains.

To deal with this problem we have implemented Privelet+

method [Xiaokui Xiao, et al. (2011)] and Privelet* method

[Xiaokui Xiao, et al. (2011)]. But while implementation

we have used array based implementation for wavelet

transforms rather than tree based implementation. This

method provides more accurate range count query answers

than the Dwork’s method.

II. PROBLEM STATEMENT

Suppose we want to publish a table that T with A1,A2,..,An

domains. In this, we try to optimize the range count query

of the form

SELECT COUNT (*) FROM T

WHERE A1S1 AND A2S2 AND,..,AnSn

S1,S2..Sn are intervals defined on domain A1,A2...An

III. PROPOSED STRUCTURE

A. Privelet+ method

Privelet+ technique takes three inputs from the user. First

input is table that we want to publish. Second is error

magnitude that we want to add in published data and third

is attribute list for further processing. This algorithm

works in following different steps:

Step 1) Calculating frequency matrix:

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 4082

For the input table, we need to calculate the frequency

matrix on one of the attribute. It computes the frequency

distribution of the tuples in the input data. For example,

suppose we want to publish following patient table having

attributes as Patient Name, Patient Address, Patient Job,

Patient Status and Patient Age. Patient Status specifies

whether the person is suffering from diabetes or not.

Table I. Medical Data

Patient

Name

Patient

Address

Patient

Job

Patient

Status

Patient

Age

Yogesh

Laga

Pune Teacher Yes 41

Arnika

Shetti

Pune Doctor Yes 42

Dhiraj

Kumar

Pune Doctor No 43

Amol

Teke

Pune Teacher No 41

Sandip

Todakar

Pune Teacher No 44

Ashvini

Prasoon

Pune Doctor No 43

The frequency matrix on Patient age for the above table

can be given as,

Table II. Frequency Matrix

Age Yes No

41 1 1

42 1 0

43 0 2

44 0 1

This can be calculated in java with following sudocode

ArrayList frequencyage=new ArrayList();

while (for each record){

 if(!frequencyage.contains(age)){

 frequencyage.add(age);

 // update fredata, Yfredata and Nfredata with

count as one

 }

 if(frequencyage.contains(age)){

 //get the current count

 // increment count by one

 // update fredata, Yfredata or Nfredata

}

Step 2) Generating Submtrices:

In this step, the frequency matrix is divided into the

number of submatrix based on the user’s input. Each

submatrix must have the same number of coordinates

calculated based on attribute list input.

For example given the frequency matrix in Table II, if

attribute list contains only the “Has Diabetes?” dimension,

then the matrix would be split into two submatrices, one of

which contains a column age and yes as attributes and

other contains age and no.

Step 3) Calculate the wavelet coefficient:

In this step, wavelets are calculated for each submatrix.

For calculating wavelets, HAAR wavelet (HW) technique

is used. These wavelets are generated by using an array.

First all the elements of submatrix are placed into the

array. Number of the elements must be equal to power of

two. If this condition is not satisfied, we have to add

dummy values. This array is copied into another array say

copiedarray. The first wavelet coefficient is generated by

taking the average of all the values known as base wavelet

coefficient. The procedure to calculate remaining HAAR

wavelet coefficients of an array of n samples is as follows

(1) Find the average of each pair of samples.(n/2)

(2) Find the difference between each average and the

samples it was calculated form.(n/2)

(3) Fill the first half of the array with averages

(4) Fill the second half of the array with differences.

(5) Repeat the process on the first half of the array until

n=1.

(6) Finally append the contents of copiedarray array to the

newly created array.

Step 4) Calculating error and adding error in wavelet

coefficient:

In this step we calculate the error for each wavelet

coefficient based on its position in the array and then we

add this calculated error in original wavelet coefficient to

generate erroneous wavelet coefficients. Amount of error

added in wavelet coefficient is given by (error magnitude)/

(weight of wavelet coefficient). Error magnitude is input

taken from the user and the weight of wavelet coefficient

can be calculated as follows.

For the base coefficient the weight is equal to the number

of rows in the frequency matrix. For the other wavelet

coefficient weight is 2
l-i+1

, where l is log(size of the

array+1)/ log(2) and i is the position of the node in the

array. This position can be calculated for every element of

array except contents of appended copiedarray by

following sudocode.

int p=0;

int y=1;

for(every index)

//calculate minvalue that is tow’s power p minus one

//calculate maxvalue that is tow’s power q minus one

if(minvalue<=index && maxvalue>=index){

 current_position=y;

//calculate currentcost that is tow’s power

current_position

 if((currentcost-2)==index){

 p=p+1;

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 4083

 y=y+1;

 }

}

}

Step 5) Reconstruction of submatrices and assembling of

submatrices:

This step calculates the submatrices from the erroneous

wavelet coefficients and assembles them in order to build

the new frequency matrix. This new frequency matrix is

nothing but the data to be published. For every index of

non-changed appended part of the array, calculation is

made in the following way to generate new values.

for every index of non-changed appended array

parent_index=index/2

while(parent_index > 0)

if(index%2==0){

 add the value at index to sum

 index=parent_index

 parent_index=parent_index/2

}

else{

 substract the value at index from sum

 index=parent_index

 parent_index=parent_index/2

}

add the sum to base coefficient

Due to the above code we will get the published data for

single submatrix. This procedure is applied to every

submatrix. Combine these submatrices to built final

published table.

B. Privelet+ with heuristic noise reduction

Due to the sparseness of the natural data, large number of

the entries in the frequency matrix may be zero. Also the

correlation is exists in the attribute. Due to this correlation

adjacent entries in the frequency matrix are close to each

other. For example, adjacent entries along the disease

dimension of the frequency matrix might not differ much,

since people with similar ages are often equally

susceptible to the same disease. For these types of the

frequency matrices, wavelet coefficients would be small

and close to zero. We are adding small error. The resulting

value is again a small number. This may suppress the

original aim of providing privacy to the data. In order to

deal with this problem we have add heuristic noise

reduction to privelet+ to create privelet*.

We apply a soft-thresholding techniques based on the θ

[Xiaokui Xiao, et al. (2011)]. Soft-thresholding transforms

each noisy wavelet coefficient c* using a function ns as

follows.

ns(c*,θ) = c* - θ, if c* > θ,

 = c* + θ, if c*<θ,

 = 0, otherwise.

For calculation of θ we use the following CompThresh

algorithm

Algorithm CompThresh (S,)

1 .

2. Sort the noisy coefficient in descending order

3. Store the sorted sequence in an array x

4. For any i [1,|S|] let and

5. Perform a linear scan on x to compute i and i for all

the i [a,|S|]

6. for i=|S| to 1

7. compute the that satisfies the following

equation

 i – 2 i. + i. 2=(|S|-1).2

8. if i=|S| and 0 x[|S|] or i<|S| and x[i] <

x[i+1]

 return

9. return =x[1]

CompThresh first estimates the variance
2
 of the noise-

free coefficients. After that, CompThresh sorts all

coefficients in descending order, and stores the sorted

sequence in an array X. Next, CompThresh performs a

linear scan on X, and computes the following two values

for each i [1; |S|]

1.

2.

Value of the θ can be calculated by following formula,

i – 2 i. + i.
2
= (|S|-1).

2

Given X, i, and i (i [1; |S|]), CompThresh computes

and returns the desired threshold and then apply the soft

thresholding on noisy wavelets.

IV. EXPERIMENTS

We have implemented a system in java to publish patient

database. For this system we have used a patient data set

having attributes as Patient Name, Patient Address, Patient

Status and Patient Age. This data set includes approximate

10000 records. On this data set we apply Privelet+ method

and Privelet* method to calculate answer for the range

count query. User enters the error magnitude and selects

the attribute list. Then system calculates the published

data. This system also measures the average absolute

error, root mean squared error and maximum absolute

error induced in the system.

The following graph is ranges vs. range count query

answer graph. From this graph we can conclude that the

error added due to the privelet+ method is less than old

method (Dwork’s method) for range count query answer.

Privelet* method provide more accurate results than both

these method.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 4084

Figure 1 Range Count Query Result

The quality of each approximate answer of range count

query is gauged by its absolute error and relative error

with respect to the actual query result. The absolute error

of X is defined as |X-act| and relative error of X is

computed as |X-act|/max{act,s}; where s is sanity bound

that mitigates the effects of queries with excessively small

selectivities. We set s as 0.1 percent of the number of

tuples in the data set. We measure the absolute error and

relative error across the coverage and selectivity of the

query respectively. Selectivity of query q is the fraction of

tuples in the data set that satisfy all predicated in q and

coverage of q is the fraction of entries in the frequency

matrix that are covered by q.

The following graph shows the average absolute error

incurred in answering each query. The X-axes of the graph

represents the coverage of the query. The graph is for

PStatus as no and the ɛ as 0.50.

Figure 2 Average Absolute Error vs. Coverage

The following figure shows the average relative error

incurred in answering each query. The X-axes of the graph

represents the selectivity of the query. The graph is for

PStatus as no and the ɛ as 0.50.

Figure 3 Average Relative Error vs. Selectivity

From the above figures we can conclude that amount of

error added in privelet* method is less than privelet+ and

old method. Privelet* provides more accurate results than

other two methods.

V. CONCLUSION

Privelet+ and Privelet* methods are data publishing

techniques. Privelet+ and Privelet* methods provide

improved results over a range count query applied.

Experimental results provide the effectiveness of the

Privelet+ method and privelet* method.

REFERENCE

[1] Carlisle D. M., et. al. (2007): California inpatient data
reporting manual, medical information reporting for California (5th Ed)

Tech. rep., Office of Statewide Health Planning and Development.

[2] Dwork C., et. al. (2006): Calibrating Noise to Sensitivity in
Private Data Analysis, Proc. Third Theory of Cryptography Conf. (TCC),

pp. 265-284.

[3] Dwork Cynthia (2008): Differential Privacy: A Survey of
Results, TAMC 2008, LNCS 4978, pp. 1–19,

[4] Fung B.C.M., et al, (2010): Privacy-Preserving Data

Publishing: A Survey of Recent Developments, ACM Computing
Surveys, vol. 42,no. 4, pp. 14:1-53

[5] Garofalkis M., Amit Kumar (2005): Wavelet Synopses for

General Error Metrics, ACM Transactions on Database Systems, Vol. 30,
No. 4, Pages 888–928.

[6] McSherry F. and Mironov I.(2009): Differentially private

recommender systems: Building privacy into the netflix prize
contenders., In KDD.

[7] Rastogi V. and Nath. S., (2010): Differentially private

aggregation of distributed time-series with transformation and
encryption, In SIGMOD.

[8] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke(2011):

Differential Privacy via Wavelet Transforms, IEEE Transactions on
knowledge and data engineering, Vol. 23, No. 8.

