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Abstract: Machine learning approach has got major importance when distribution of data is unknown. Classification of 

data from the data set causes some problem when distribution of data is unknown. Characterization of raw data relates to 

whether the data can take on only discrete values or whether the data is continuous. In real world application data drawn 

from non-stationary distribution, causes the problem of “concept drift” or “non-stationary learning”. Drifting of dataset is 

often associated with online learning scenario. The goal of intelligent machine learning algorithms is to be able to address a 

wide spectrum of real world scenarios, then the need for a general framework for learning from, and adapting to, a non-

stationary environment that may introduce imbalanced data can be hardly overstated. This paper focus on imbalanced data 

that results in unequal representation of classes in a pattern recognition problem. There are typically two types on class in 

an imbalanced pattern recognition problem, majority (negative) and minority (positive). 
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I. INTRODUCTION 

Classification learning from a static dataset can be done 

easily. So, it is assumed that the dataset contain all necessary 

information to learn the relevant concepts. The model which 

is working in real world scenarios, e.g., intrusion detection, 

spam detection, fraud detection, loan recommendation, 

climate data analysis makes some prediction on previous 

data to detect the upcoming changes. All training data often 

received over time in streams of instances or batches. 

Arrival of data takes different ways either incrementally or 

in batches. Learning of model using all the information 

predicts new instances arriving at time step t+ 1. A learning 

algorithm is incremental when it produces a sequence of 

dependences on the training data and a limited number of 

previous hypotheses. A classifier can be updated 

incrementally from newly available data and simultaneously 

maintaining the performance of the classifier on old data. 

Stability of classifier evaluated when it is learning through 

the changing dataset and adaptive to the new concept. 

Concept change causes classification problem, as received 

emails changes as time. [Kuncheva L,2004] data stream is an 

ordered sequence of instances. Data streams can be 

processed by online classifiers. Those classifiers should have 

the following qualities Single pass through the data. The 

classifier reads each example only once. Limited memory 

and processing time. Each example should be processed very 

fast and in a constant period of time. Any-time learning. The 

classifier should provide the best answer at every moment of 

time. Concept drift is the fundamental of problem in learning  

 

drifting concepts is how to identify those data in the training 

set in a timely manner that are no longer consistent with the 

current concepts and hence several criteria is used to 

measure the concept drift. There are several approaches to 

track the drift from the dataset; detection of drift has got 

major research attention. The concept refers to the quantity 

to be predicted. It can also refer to other phenomenon of 

interest besides the target concept. Such as an input, but in 

the context of concept drift the term commonly refers to the 

target variable. 

  

II.  CLASS IMBALANCE PROBLEM IN 

CLASSIFICATION    

  We first introduce the problem of imbalanced data-sets in 

classification. Then, we present how to evaluate the 

performance of the classifiers in imbalanced domains. 

Finally, we recall learn++.NIE techniques to address the 

class imbalance problem, specifically, the data level 

approaches that have been Combined with ensemble 

learning algorithms in previous works. Prior to the 

introduction of the problem of class imbalance, we should 

formally state the concept of supervised classification. In 

machine learning, the aim of classification is to learn a 

system capable of the prediction of the unknown output class 

of a previously unseen instance with a good generalization 

ability.  
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Fig 1.  Example of difficulties in imbalanced data sets. (a) Class 

overlapping (b) Small disjuncts 

 

The learning task, i.e., the knowledge extraction, is 

carried out by a set of n input instances x1,...,xn characterized 

by i features a1,...,ai ∈ A, which includes numerical or 

nominal values, whose desired output class labels yj ∈ C = 

{c1,...,cm},in the case of  supervised classification, are known 

before to the  learning stage. In such a way, the system that 

is generated by the learning algorithm is a mapping function 

that is defined over the patterns A
i 

→ C, and it is called 

classifiers. 

 

A. The Problem of Imbalanced Data-Sets 

In classification, a data-set is said to be imbalanced 

when the number of instances which represents one class is 

smaller than the ones from other classes. Furthermore, the 

class with the lowest number of instances is usually the class 

of interest from the point of view of the learning task [N. V. 

Chawla,et al,2004]. This problem is of great interest because 

it turns up in many real world classification problems, such 

as remote sensing, pollution detection [W.-Z. Lu and 

D.Wang, 2008], risk management [Y.-M. Huang,et al,2006], 

fraud detection, and especially medical diagnosis[X. Peng 

and I. King,2008].In these cases, standard classifier learning 

algorithms have a bias toward the classes with greater 

number of instances, since rules that correctly predict those 

instances are positively weighted in favour of the accuracy 

metric, whereas specific rules that predict examples from the 

minority class are usually ignored  (Treating them as noise), 

because more general rules are preferred. In such a way, 

minority class instances are more often misclassified than 

those from the other classes. Anyway, skewed data 

distribution does not hinder the learning task by itself. The 

issue is that usually a series of difficulties related to this 

problem turn up. 

a) Small sample size 

Generally imbalanced data-sets do not have enough 

minority class examples. In [6], the authors reported that the 

error rate caused by imbalanced class distribution decreases 

when the number of examples of the minority class is 

representative (fixing the ratio of imbalance). This way, 

patterns that are defined by positive instances can be better 

learned despite the uneven class distribution. However, this 

fact is usually unreachable in real-world problems. 

b) Overlapping or class separability 

 [See Fig. 1(a)]: When it occurs, discriminative 

rules are hard to induce. As a consequence, more general 

rules are induced that misclassify a low number of instances 

(minority class instances) [7]. If there is no over lapping 

between classes, any simple classifier could learn an 

appropriate classifier regardless of the class distribution. 

c) Small disjuncts 

 [See Fig. 1(b)]: The presence of small disjuncts in 

a data-set occurs when the concept represented by 

 
Table .1 

Confusion Matrix for a Two-Class Problem 

 
Class Positive prediction Negative prediction 

Positive 

class 

True Positive False Negative 

Negative 

class 

False Positive True Negative 

 

The minority class is formed of sub concepts [8]. 

The majority class corresponds to a class or set of classes 

that is the large majority of the instances in a dataset. The 

minority class is under-represented in the training data. The 

minority class is typically of greater importance than the 

majority class to the pattern recognition problem. Besides, 

small disjuncts are implicit in most of the problems. The 

existence of sub concepts also increases the complexity of 

the problem because the amount of instances among them is 

not usually balanced. In this paper, we focus on two-class 

imbalanced data-sets, where there is a positive (minority) 

class, with the lowest number of instances, and a negative 

(majority) class, with the highest number of instances. We 

also consider the imbalance ratio (IR) defined as the number 

of negative class examples that are divided by the number of 

positive class examples, to organize the different data-sets. 

 

B. Performance Evaluation in Imbalanced Domains: 

The evaluation criterion is a key factor both in the 

assessment of the classification performance and guidance of 

the classifier modelling. In a two class problem, the 

confusion matrix (shown in Table I) records the results of 

correctly and incorrectly recognized examples of each class. 

Traditionally, the accuracy rate (1) has been the most 

commonly used empirical measure. However, in the 

framework of imbalanced data-sets, accuracy is no longer a 

proper measure, since it does not distinguish between the 

numbers of correctly classified examples of different classes. 

Hence, it may lead to erroneous conclusions, i.e., a classifier 

that achieves an accuracy of 90% in a data-set with an IR 

value of 9, is not accurate if it classifies all examples as 

negatives. 

   Acc=     

                       



ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

   
  International Journal of Advanced Research in Computer and Communication Engineering 
  Vol. 2, Issue 9, September 2013 

 

Copyright to IJARCCE                                                                             www.ijarcce.com                                                                                3642 

For this reason, when working in imbalanced domains, there 

are more appropriate metrics to be considered instead of 

accuracy. Specifically, we can obtain four metrics from 

Table I to measure the classification performance of both, 

positive and negative, classes independently. 

i. True positive rate TPrate= is the percentage of 

positive instances correctly classified. 

ii. True negative rate TNrate= is the percentage 

of negative instances correctly classified. 

iii. False positive rate FPrate = is the percentage of 

negative instances misclassified. 

iv. False negative rate FNrate= is the percentage 

of positive instances misclassified. 

 

Clearly, since classification intends to achieve good quality 

results for both classes, none of these measures alone is 

adequate by itself. One way to combine these measures and 

produce an evaluation criterion is to use the receiver 

operating characteristic (ROC) graphic [9]. This graphic 

allows the visualization of the trade-off between the benefits 

(TPrate) and costs (FPrate); thus, it evidences that any 

classifier cannot increase the number of true positives 

without the increment of the false positives. The area under 

the ROC curve (AUC) corresponds to the probability of 

correctly identifying which one of the two stimuli is noise 

and which one is signal plus noise. AUC provides a single 

measure of a classifier‟s performance for the evaluation that 

which model is better on average. 

Fig. 2 shows how to build the ROC space plotting 

on a two dimensional chart, the TPrate (Y-axis) against the 

FPrate (X-axis). Points in (0, 0) and (1, 1) are trivial 

classifiers where the predicted class is always the negative 

and positive, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2: Graph Representation of True Positive Rate and 

False Positive Rate 
 

 

On the contrary, (0, 1) point represents the perfect 

classification. The AUC measure is computed just by 

obtaining the area of the graphic: 

 

AUC=  

C) Dealing with the Class Imbalance Problem 
On account of the importance of the imbalanced 

data-sets problem, a large amount of techniques have been 

developed to address this problem. As stated in the 

introduction, these approaches can be categorized into three 

groups, depending on how they deal with the problem. 

a) Algorithm level approaches (also called internal) try to 

adapt existing classifier learning algorithms to bias the 

learning toward the minority class [10]. These methods 

require special knowledge of both the corresponding 

classifier and the application domain, comprehending why 

the classifier fails when the class distribution is uneven. 

b) Data level (or external) approaches rebalance the class 

distribution by resampling the data space [11].This way, 

they avoid the modification of the learning algorithm by 

trying to decrease the effect caused by imbalance with a pre-

processing step. Therefore, they are independent of the 

classifier used, and for this reason, usually more versatile. 

c) Cost-sensitive learning framework falls between data and 

algorithm level approaches. It incorporates both data level 

transformations (by adding costs to instances) and algorithm 

level modifications (by modifying the learning process to 

accept costs). It biases the classifier toward the minority 

class the assumption higher misclassification costs for this 

class and seeking to minimize the total cost errors of both 

classes. The major drawback of these approaches is the need 

to define misclassification costs, which are not usually 

available in the data-sets. Aside from those three categories, 

ensemble-based methods can be classified into a new 

category. These techniques usually consist in a combination 

between an ensemble learning algorithm and one of the 

techniques above, specifically, data level and cost sensitive 

ones. By the addition of a data level approach to the 

ensemble learning algorithm, the new hybrid method usually 

pre-processes the data before training each classifier. On the 

other hand, cost-sensitive ensembles instead of modifying 

the base classifier in order to accept costs in the learning 

process guide the cost minimization via the ensemble 

learning algorithm. This way, the modification of the base 

learner is avoided, but the major drawback in the cost. 

III. DATA LEVEL METHODS FOR HANDLING 

IMBALANCE DATA 

An easy Data level method for balancing the 

classes consists of resampling the original data set, either by 

oversampling the minority class or by under-sampling the 

majority class, until the classes are approximately equally 
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represented. Both strategies can be applied in any learning 

system, since they act as a pre-processing phase, allowing 

the learning system to receive the training instances as if 

they belonged to a well-balanced data set. Thus, any bias of 

the system towards the majority class due to the different 

proportion of examples per class would be expected to be 

suppressed. Hulse et.al.[12] Suggest that the utility of the 

resampling methods depends on a number of factors, 

including the ratio between positive and negative examples, 

other characteristics of data, and the nature of the classifier. 

However, resampling methods have shown important 

drawbacks. Under-sampling may throw out potentially 

useful data, while over-sampling artificially increases the 

size of the data set and consequently, worsens the 

computational burden of the learning algorithm.  

A) Undersampling and Oversampling 

Under-sampling and over-sampling change the 

training sets by sampling a smaller majority training set and 

repeating instances in the minority training set. The level of 

imbalance is reduced in both methods, with the hope that a 

more balanced training set can give better results. Both 

sampling methods are easy to implement and have been 

shown to be helpful in imbalanced problems. Under 

sampling requires shorter training time, at the cost of 

ignoring potentially useful data. Over-sampling increases the 

training set size, and thus requires longer training time. 

Furthermore, it tends to lead to overfitting since it repeats 

minority class examples [13]. Besides the basic under-

sampling and over-sampling methods, there are also 

methods that sample in more complex ways. SMOTE added 

new synthetic minority class examples by randomly 

interpolating pairs of closest neighbors in the minority class. 

The one-sided selection procedures [14] tried to find a 

representative subset of majority class examples by only 

removing „borderline „and „noisy‟ majority examples. Some 

other methods combine different sampling strategies to 

achieve further improvement. Also, researchers have studied 

the effect of varying the level of imbalance and how to find 

the best ratio when a C4.5 tree classifier was used [15]. 

 

B) Synthetic Minority Oversampling Technique:  

[SMOTE] 

Over-sampling by replication can lead to similar 

but more specific regions in the feature space as the decision 

region for the minority class. This can potentially lead to 

over fitting on the multiple copies of minority class 

examples. To overcome the over fitting and broaden the 

decision region of minority class examples, we introduced a 

novel technique to generate synthetic examples by operating 

in "feature space" rather than "data space" (Chawla et al., 

2002). The minority class is over-sampled by taking each 

minority class sample and introducing synthetic examples 

along the line segments joining any/all of the k minority 

class nearest neighbors. Depending upon the amount of 

over-sampling required, neighbors from the k nearest 

neighbors are randomly chosen. Synthetic samples are 

generated in the following way: Take the difference between 

the feature vector (sample) under consideration and its 

nearest neighbor. Multiply this difference by a random 

number between 0 and l, and add it to the feature vector 

under consideration. This causes the selection of a random 

point along the line segment between two specific features. 

This approach effectively forces the decision region of the 

minority class to become more general. For the nominal 

cases, we take the majority vote for the nominal value 

amongst the nearest neighbors. We use the modification of 

Value Distance Metric (VDM) (Cost and Salzberg, 1993) to 

compute the nearest neighbors for the nominal valued 

features. The synthetic examples cause the classifier to 

create larger and less specific decision regions, rather than 

smaller and more specific regions, as typically caused by 

over-sampling with replication. More general regions are 

now learned for the minority class rather than being 

subsumed by the majority class samples around them. The 

effect is that decision trees generalize better. SMOTE was 

tested on a variety of datasets, with varying degrees of 

imbalance and varying amounts of data in the training set, 

thus providing a diverse tested. SMOTE forces focused 

learning and introduces a bias towards the minority class. On 

most of the experiments, SMOTE using C4.5 (Quinlan, 

1992) and Ripper (Cohen, 1995a) as underlying classifiers 

outperformed other methods including sampling strategies, 

Ripper's Loss Ratio, and even Naive Bayes by varying the 

class priors.  

C) Overcoming Class Imbalance In Concept Drifting Data 

Streams 

In the previous sections we focused on strategies 

for over- coming concept drift in balanced class 

distributions. While this research is valuable, a large number 

of concept drifting data sources also suffer from class 

imbalance (e.g., credit card fraud, network intrusion 

detection, etc.). In this section we outline various methods 

which seek to overcome both issues simultaneously, and 

note the relative paucity of research into such methods. In 

addition to being the most commonly applied technique 

when dealing only with concept drift, ensemble methods 

have also been the de facto standard for combating class 

imbalance. Gao et al proposed a framework based on 

collecting positive class examples. In their ensemble 

algorithm, they break each incoming chunk into a set of 

positive (P) and negative (Q) class instances. One then 

selects all seen positive class instances (AP), and a subset of 

the negative class instances (O) which is determined 

randomly based on a distribution ratio. These two sets are 

then combined to form a complete dataset to train the new 

ensemble classifier Ci. By accumulating all positive class 

instances, this approach implicitly assumes, however, that 

the minority class is not drifting. Building on this concept, 
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Chen and He propose SERA, which is similar to the 

proposal of Gao et al. however, instead of using all past 

instances, the algorithm selects the 

“Best” n minority class instances as defined by the 

Mahalanobis distance. Given these instances, the algorithm 

then uses all majority class instances and uses bagging to 

build an ensemble of classifiers. Thus SERA suffers from a 

similar, albeit less severe, concern as the method proposed 

by Gao et al., as the algorithm may not be able to track drift 

in minority instances depending on the parameter n. 

Similarly, Lichtenwalter and Chawla propose an extension 

of Gao et al.‟s work where instead of propagating all 

minority class examples, they also propagate misclassified 

majority class instances. In this way, they seek to better 

defined the boundary between the classes, thereby increasing 

the performance of the ensemble members. Additionally, 

they propose to use a combination of Hellinger distance and 

information gain to measure the similarity of the cur- rent 

batch to the batch that each ensemble member was built on. 

The more similar the batches, the more likely that they 

describe the same concept. Thus each ensemble member‟s 

probability estimate is weighted by the similarity measure in 

order to obtain a more accurate prediction. Finally, Ditzler 

and Polikar outline a method for extending their 

Learn++.NSE algorithm for the case of class imbalance. In 

these papers, the authors propose Learn++.NIE (for learning 

in non-stationary and imbalanced environments). In 

Learn++.NIE, the authors apply the logic of the 

Learn++.NSE algorithm, with an additional step of using 

bagging instead of a single base classifier. In this way, the 

authors claim they can both reduce error via bagging, and, 

more importantly, learn on a less imbalanced dataset by 

under-sampling the majority class when creating each bag. 

 

IV CONCLUSION  

The paper provides an overview of the 

classification of imbalanced data sets. At data level, 

sampling is the most common approach to deal with 

imbalanced data. Oversampling clearly appears as better 

than under-sampling for local classifiers, whereas some 

under-sampling strategies outperform over-sampling when 

employing classifiers with global learning. 
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