
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3745

A New Approach of Performance Analysis of

Certain Graph Algorithms

M. F Mridha
1
, Mohammad Manzurul Islam

2
, Syed Mohammad Oliur Rahman

 3

Assistant Professor, CSE, University of Asia Pacific, Dhaka, Bangladesh
 1

Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
 2

CSE Department, University of Development Alternative, Dhaka, Bangladesh
 3

Abstract: Computer Network based problems often require searching a node from another and finding a path from one node to another.

To solve this we use graph algorithms. Solving these problems takes a lot of time and knowledge when solved manually. For this

purpose graph algorithms where devised and solving these problems became easier but the time taken to solve these problems using the

algorithms sequentially takes a lot of time. So to make the time consumed to be less we devised the parallel version of these algorithms

and tested. In this paper, we present a new parallel Prim algorithm targeting SMP with shared address space.

Keywords: CUDA/C, prim’s algorithm, bread first search, Speedup

I. INTRODUCTION

In our case the problem for searching we solve using

Breadth First Search algorithm in parallel while for finding

the Minimum Spanning Tree (MST) we use prim’s

algorithm.

MST problem has applications in network organization,

touring problems, VLSI routing problem, partitioning data

points into clusters and various other fields. There exist

many serial and parallel algorithms for the MST problem.

The first

serial algorithm for finding MST was given by Borůvka [4].

Other two commonly used algorithms are Kruskal's

algorithm and Prim’s algorithm [3]. Most of the existing

Parallel algorithms are based on Borůvka's algorithm.

Examples are Chung et. al. [5] and Chong et. al. [6].

Recently a hybrid approach (of Prim and Borůvka) was used

by Bader et. al. [7]. There are several parallel formulations

of Prim’s algorithm [7, 8]. In this paper we design and

implement a new Parallel Prim algorithm for the MST

problem targeting SMP with shared memory. We use

multiple threads to run algorithm in parallel. A traversal

refers to a systematic method of exploring all the vertices

and edges in a graph. The ordering of vertices using a

breadth first search (BFS) is of particular interest in many

graph problems. Theoretical analysis in the random access

machine (RAM) model of computation indicates that the

computational work performed by an efficient BFS

algorithm would scale linearly with the number of

vertices and edges, and there are several well-

known implementations of BFS algorithms. However,

efficient RAM algorithms do not easily translate into good

performance on current computing platforms. This

mismatch arises due to the fact that current architectures

lean towards efficient execution of regular computations

with low memory footprints, and heavily penalize memory-

intensive codes with irregular memory accesses. Graph

traversal problems such as BFS are by definition

predominantly memory access-bound, and these accesses

are further dependent on the structure of the input graph,

thereby making the algorithms irregular.

A fundamental property that we use in our parallel prim’s

algorithm is the Cut property of MST. For any cut C in the

graph, the edge with the smallest weight in the cut belongs

to all MSTs of the graph. Such a minimum weight cut edge

for a cut is called a light edge. If there are multiple edges

with the same smallest cost, at least one of them will be

in the MST. In this paper we design and implement a new

Parallel Prim algorithm for the MST problem targeting

SMP with shared memory. We use multiple threads to run

algorithm in parallel. The algorithm non- deterministically

chooses a node and sets it as root. Each thread starts

growing a tree in parallel by colouring the nodes with a

unique colour (called its id). When a collision occurs (a

thread likes to add a node that belongs to another tree),

one of the thread sends a signal to other and we merge

these trees using a MergeTree operation. We force the

tree grown by the thread with larger-id to merge with tree

grown by a thread with smaller-id. Eventually, thread 0 will

have the MST. The threads are assumed to have the

capability to send asynchronous signals to each other.

II. RELATED WORK

There are several parallel implementations of Prim’s

algorithm. Kumar et. al. [8] pointed out that the main outer

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3746

while loop of serial Prim is very difficult to run in parallel.

But one can find nearest outside node in parallel by Min-

Reduction and also the update-keys step can be done in

parallel. The adjacency matrix is partitioned in a 1-D block

fashion. (Each processor has n × n/P of the adjacency matrix

and n/p of the Key Array). Each processor finds the locally

nearest node, a global min reduction is done and main

thread adds the nearest node to the tree and the row entry of

this node in adjacency matrix is broadcast to all processors.

Gonina et. al. [9] follows a very similar algorithm but

instead of adding one node to the current tree, their

algorithm tries to add more nodes to the tree in every pass

by doing some extra computation. The algorithm finds

locally K nearest outside nodes and global Min-Reduction is

done to obtain globally closest K nodes. The algorithm then

iterates through the list to find out whether they are valid or

not.

The main point to note here is that in both parallel

formulations of Prim’s algorithm they are growing a single

tree. Bader et. al. [7] came up with a nondeterministic

shared memory algorithm which uses a hybrid approach of

Borůvka and Prim algorithm. Each processor chooses a root

node and grows tree in similar fashion of serial Prim

approach and

when the tree finds a nearest node that doesn’t belong to any

other tree it can add the node, whereas if the node belongs to

another tree then it must stop growing and start with a new

root. In the end, we get different connected components

(which are trees) and some isolated vertices. No two trees

share a vertex because merging was avoided. Now Find-Min

step of Borůvka Algorithm is used to shrink each of the

components into a super node.

Sequential Implementations of Algorithms
To find a shortest path from s to v, we start at s and check

for v among all the vertices that we can reach by following

one edge, then we check for v among all the vertices that

we can reach from s by following two edges, and so forth.

BFS is analogous to a group of searchers exploring by

fanning out in all directions, each unrolling his or her own

ball of string. When more than one passage needs to be

explored, we imagine that the searchers split up to explore

all of them; when two groups of searchers meet up, they

join forces (using the ball of string held by the one getting

there first). In BFS, we want to explore the vertices in order

of their distance from the source. It turns out that this order

is easily arranged: use a (FIFO) queue instead of a (LIFO)

stack. We choose, of the passages yet to be explored, the

one that was least recently encountered.

Our first MST method, known as Prim’s algorithm, is to

attach a new edge to a single growing tree at each step.

Start with any vertex as a single-vertex tree; then add V_1

edges to it, always taking next, the minimum weight edge

that connects a vertex on the tree to a vertex not yet on

the tree.

A. Parallel Implementation of BFS

PBFS uses layer synchronization to parallelize breadth

firstsearch of an input graph G.

Let v0 ∈ V(G) be the source vertex, and define layer d to

be the set Vd ⊆V(G) of vertices at distance d from v0.

Thus, we have V0 ={v0}. Each iteration processes layer d

by checking all the neighbors of vertices in Vd for those

that should be added to Vd+1

 Also note that the levels are considered here which

means the height vice searching for the required node.

We consider the height because the when the graph is dense

at each level we have 2
d-1

nodes where d is the depth of

the binary tree or the level of the binary tree but if the tree

is scarce then the number of nodes will be less or equal to

2
d-1

nodes at each level meaning more levels are in

network graph.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3747

Parallel Implementation of Prim’s

The following algorithm gives the code to be executed by

the threads.

B. Experiment

The experiment was conducted in the CAPPLAB on GPU’s

Tesla C2075 (14 SMs, 14x32 = 448 cores).

 Input: Adjacency Matrix of the Graph

 Sequential Breadth First Search

 Parallel Breadth First Search

 Sequential Prim’s

 Parallel Prim’s

 Analyze the output

 Speed up Computation

The results obtained in the lab that are given below.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3748

In future other graph based algorithms will be taken

up for parallelization.

III. CONCLUSION

In this paper we presented a new parallel Prim algorithm

that grows multiple trees in parallel. We made simple

observations based on the cut property of the graph to grow

MSTs in parallel. Our algorithm achieves reasonable

speedup when it is compared with Serial Prim algorithm for

dense graphs and sparse graphs. Breadth First Search and

Prim’s Algorithm’s parallel implementations using

CUDA/C was successfully done. The Speedup computed

helped realize performance improvements by the use of

parallel algorithms. In case of breadth first search algorithm

in parallel when graph is sparse speed up is 2.0 while that of

when graph is dense 1.9. As for as prim’s is concerned

speedup is at the minimum of 1.96 i.e 2.0 more when at

least 2 threads are used.

REFERENCES

[1]. Rohit Setia, Arun Nedunchezhian, Shankar alachandran, “A New

Parallel Algorithm forMinimum Spanning Tree Problem”, in HIPC 2009,
Kochi, Kerala, India.

[2]. Robert Sedgewick and Kevin Wayne, “Algorithms”, Addison-Wesley,

4
th

Edition, 2011.
[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. MIT Press,Cambridge, MA.1990

[4] Otakar Borůvka. O jistem problem minimalnim (About a certain

minimal problem). Prace mor. přirodověd. spol. v Brně III 3: 37– 58.1926

[5] Sun Chung and Anne Condon. Parallel implementation of Bor°uvka’s
minimum spanning tree algorithm.(IPPS’96)

[6] Ka Wong Chong, Yijie Han, Yoshihide Igarashi, and Tak Wah Lam.

1999. Improving the Efficiency of Parallel Minimum Spanning Tree
Algorithms. Discrete Applied Mathematics. 2003

[7] David A. Bader, and Guojing Cong.Fast. Shared-Memory Algorithms

for Computing the Minimum Spanning Forest of Sparse Graphs. JPDC, 2006
[8] G. Karypis A. Grama, A. Gupta and V. Kumar. Introduction to Parallel

Computing.Addison Wesley, second edition, 2003.

[9] Ekaterina Gonina and Laxmikant V. Kale. Parallel Prim’s algorithm on
dense graphs with a novel extension. Technical Report. Department of

Computer Science, University of Illinois at Urbana-Champaign. November

2007.

