A Comprehensive Review on Vehicular Ad hoc Network

Anuradha Singh1, Mintu Singh2

M-Tech Student, Department of CSE, Echelon Institute of Technology Faridabad, India1
Assistant Professor, Department of CSE, Echelon Institute of Technology Faridabad, India2

Abstract: Vehicular Ad-hoc Network (VANET) is a most critical class of mobile ad-hoc network (MANET) which enables intelligent communication among vehicles and also between vehicle and roadside infrastructures. It is a promising approach for the Intelligent Transport System (ITS). There are many challenges to be addressed when employing VANET. It has a very high dynamic topology and constrained mobility which makes the traditional MANET protocols unsuitable for VANET. The aim of this review paper is to give an overview of the vehicular ad hoc networks, its standards, applications, security issues and the existing VANET routing protocols.

Keywords: VANET, ITS, dynamic topology, mobility, routing protocols.

I. INTRODUCTION

The vision of whole cities covered with dynamic networks of “talking cars” is gradually becoming a reality[1]. The networks so formed are called Vehicular Ad hoc Networks (VANETs). VANET consist of a number of dynamically moving nodes, creating an ad hoc network. It turns every participating vehicle into a wireless router and allow them to connect with each other within 300 meters of range. Vehicles are equipped with Intelligent Transportation System which potentially have extensive on-board storage capacities, longer transmission ranges and rechargeable sources of energy[2].

The mobility of vehicles is constrained by predefined paths, node’s speed limit or the congestion level. Advanced wireless technologies enable direct and instant communication among vehicles (Vehicle-to-Vehicle V2V) as well as between vehicles and the road infrastructure (Vehicle-to-Infrastructure V2I)[1].

Finding a route to a certain destination is a common experience for all drivers. In the old days, a driver usually refers to a hardecopy of the atlas. The drawbacks are quite obvious[3]. Routing protocols are used to route the data packets to destination. The main aim of routing protocol is to provide optimum path between two nodes with minimum overhead. Special features of VANETs routing including ever changing network topology, geographical constraints, high dynamics, predicatable mobility, high computational capability, high transmission power, partitioning and large scale, and mobility models, make it different to routing in mobile ad-hoc networks (MANETs)[4][5].

To evaluate VANET protocols and applications, outdoor experiments can be used but it can be difficult and expensive to implement because it involves high number of vehicles and real-life scenarios. To overcome these problems, simulation tools are used extensively for VANET simulations [6].

VANET can be used for a broad range of Safety and Non-Safety applications. It includes sharing of multimedia information and traffic control. When applied to the traffic control, it is helpful in avoiding accidents by distributing information about the road situation, such as traffic accidents and road congestion. Therefore, it can effectively manage city traffic, reduce accidents and improve safety with high efficiency. It can also helps to share some information between vehicles, such as weather forecast, gas station and restaurant addresses. VANET can also provide music or video download services when it is connected to Internet as terminal networks [7]. It also allows many value added services like automated toll payment, traffic management, vehicle safety, location based services like finding closest restaurant, travel lodge, fuel station and infotainment applications like access to internet [8].

II. VANET ARCHITECTURE

In Vehicular network System, vehicles are considered as nodes which can move freely within a network and stay connected, even if they are at high speed. Each vehicle can communicate with other vehicle via DSRC (Dedicated Short Range Communication) [9]. The communication between different units of this system is achieved through a
wireless medium known as WAVE (Wireless Access For Vehicular Environment). WAVE provides a wide range of information to the entities (drivers and travelers) of the system and also enables safety application to enhance road safety[10].

**B. RSU (Road Side Unit)**

Road side unit is a wave device which is fixed along the roads or in dedicated locations such as junction and near parking spaces. RSU acts as router between the vehicles on road and other network devices. It helps in extending the communication range of ad hoc network, running safety application and providing Internet connectivity to OBUs[10]. Main functions of RSU are:

i. RSU extends the communication range of an ad hoc network by forwarding and distributing the information to other OBU and RSU.

ii. It acts as information source and receiver and provides internet connectivity to OBUs.

**C. AU (Application Unit)**

Application Unit is a device equipped in vehicles which communicates with the network through OBU [8]. AU is an in-vehicle entity and executes a set of applications utilizing the communication capabilities of OBU[10].

III. VANET COMMUNICATION STANDARDS

The requirements of interconnectivity and interoperability can be guaranteed only by the use of standard. Also, the standard can help to verify the emergence of new products to enable rapid implementation of new technologies. Various standards that relate to wireless access in vehicular environment are[12]:

**A. Dedicated Short Range Communication (DSRC):**

DSRC (Dedicated Short Range Communication) is a short to medium range communication service that offers communication between Vehicle to Vehicle (V2V) and Vehicle to Road Side Unit (V2R).

It provides high data transfers and low latency in small communication zones. The Federal Communication Commission (FCC) allocated 75 MHz of spectrum at 5.9 MHz to be used by DSRC. The DSRC spectrum is divided into seven channels, each 10 MHz wide. One channel is restricted for safety communication, two other channels are for special purposes and remaining channels are...
service channels for either safety or non-safety applications.

B. IEEE 1609 – Standards for Wireless Access in Vehicular Environments (WAVE) (IEEE 802.11p)

Due to special challenges of VANET, the technology 802.11 used in Mobile Ad Hoc Network (MANET) results in low performance in VANET.

To overcome this problem, ASTM migrated to IEEE 802.11 standard group which renamed DSRC to IEEE 802.11p Wireless Access in Vehicular Environment (WAVE).

The complexity and operational functions of DSRC are carried out by upper layers of IEEE 1609 standards which define how application that utilize will function in WAVE environment.

IV. VANET ROUTING

Routing is a process of finding a path from source to destination. The main aim is to send the data packets among randomly distributed nodes in a network [13].

High mobility of nodes and rapid changes of topology are the main factors that influence the need of generating an efficient routing protocol which can deliver a packet in minimum period of time.

A well designed routing protocol can increase the reliability and scalability of the system and can reduce interference to a great extent.

Types of Routing Protocol:
1) Pro-active Routing Protocol
2) Reactive Routing Protocol

A. Pro-active Routing Protocol

In this, a table called Routing Table that stores information about all the routes, is maintained whether route is necessary or not. So, it is also called as Table-Driven Protocol.

The table is updated with change in network topology and is broadcasted periodically. Shortest Path Algorithm is used to find out entire path. DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing) are Table Driven protocols [6].

Advantages:
- Route is always available.
- No route discovery is required.
- Low latency for real time applications.

Disadvantages:
- It becomes difficult to maintain routing table as the network size increases.
- It leads to overhead in high mobility network.
- Not for larger networks [14].
- Consumption of more bandwidth [14].

B. Reactive Routing Protocol

In this protocol, route between source and destination is determined on a demand or need basis. So, it is also called as On-Demand Routing Protocol. It establishes a route only when a node requests for it by initiating a route discovery process [15]. Reactive routing protocol do not store or continuously update their routing tables with new route topology. If a node wants to send a packet to another node then it searches for the best possible route and establishes the connection to transmit and receive the packet. The route discovery is established by flooding the route request packets throughout the network [14]. AODV (Ad hoc On Demand Distance Vector), DSR (Dynamic Source Routing) are On-Demand Routing Protocols [6].

Advantages:
- Reduced burden on network.
- Easy to maintain routing information.
- Suitable for application scenarios.

Disadvantages:
- Limited number of routes.
- Finding routes lead to high latency.
- Failed to discover a complete path due to frequent network partition.

V. VANET SIMULATION

Evaluation of different application and protocols could be made via real outdoor experiment but they are time costly and claim a large number of resources. Instead, Simulation can be used to evaluate different simple or complicated or innovative solutions before implementation [16].

Implementing a network on computer is done through network simulators that allow researchers to test scenarios which are difficult and expensive to simulate in real world [17]. Network Simulators helps to study how network...
would behave under a given set of conditions, as per user’s requirement. Network simulators are relatively fast and inexpensive as compared to the cost and time involved in setting up an entire test bed containing multiple networked computers, data links and routers[18]. Various network simulators are:

A. NS-2:
NS-2(Network Simulator Version 2) is a discrete event simulator developed under VINT ( Virtual Inter Network Test bed) at the University of California in 1995[18].NS-2 need Cygwin software to install it in window.

Features:
• Support TCP, routing and multicast protocol.
• Open Source
• Modularity
• Complex scenarios can be easily tested.

Limitations:
• Unreliable bugs.
• Too complex to model real system i.e. complicated structure.

B. QualNet
QualNet is the commercial network simulator from Scalable Network Technologies. It can simulate large, heterogeneous networks and distributed application that executes on such network [17]. Features [20]:
• Optimized for scalability and speed on one processor.
• Executes simulation multiple times faster as compared to processor.
• Simulate models with as many as 60,000 mobile nodes.

C. OPNET:
Optimized Network Engineering Tools (OPNET) was acquired by Riverbed Technologies in 2012. It provides a wide variety of possibilities to simulate entire heterogeneous network with various protocol [17].

Table 1. Comparison of Network Simulators [19]

<table>
<thead>
<tr>
<th>Feature</th>
<th>NS-2</th>
<th>QualNet</th>
<th>OPNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>VANET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.11</td>
<td>Only for ns-2.33</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Open Source</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GUI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continuous Development</td>
<td>NS-3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Parallel Processing</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ease of use</td>
<td>Hard</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ease of setup</td>
<td>Easy</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Examples</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Scalability</td>
<td>Poor</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Programming Language</td>
<td>C++ &amp; OTcl</td>
<td>C/C++</td>
<td>C</td>
</tr>
</tbody>
</table>

VI. VANET SECURITY ISSUES
With dynamic nature and high mobility, use of wireless media makes VANET vulnerable to attacks which can exploit broadcast and open nature of wireless communication. Unique characteristics of VANET leads to unique security challenges [21]. Some serious attacks of VANET are:

A. Sybil Attack
Sybil Attack allows a malicious sender to create a number of fake identities called Sybil nodes and behaves as a
normal node. It depends on how cheaply fake identities can be generated, the degree to which a system accepts input from those identities that do not possess a chain of trust linking them to a trusted authority, and whether the system identically treats all entities [10].

**B. Warm Hole Attack**

Using an extra communication channel called tunnel, attacker connects two distinct parts of ad hoc network. As a result, two distant nodes send data using this tunnel, assuming that they are neighbours. Wormhole Attack is occurred between two malicious nodes/worms connected through a high speed wired or wireless link called Worm hole link or tunnel [22]. It is hard to detect as the path used to transmit the data packets is not a part of actual network.

![Figure 9. Warm Hole Attack](image)

**C. Sink Hole Attack**

Sink Hole Attack prevents the Road Side unit/Base station from obtaining correct and complete sensing information. Intruder attracts surrounding nodes with unfaithful routing information and then selectively forwards or alters the data packets passing through the network.

It severely affects wireless sensor networks given the vulnerability of wireless links.

**D. Jamming Attack**

Jamming Attack is a special case of DoS attack. DoS attack aimed at disrupting the complete routing information. Attacker/Jammer transmit a signal along with security threat and prevents reception of legitimate data packets [23].

**E. Black Hole Attack**

The malicious node advertises the shortest path to reach the destination node during route discovery process in AODV. The malicious node tries to drop all data packets or to hinder the entire route discovery process.

So, Black hole node receive the data packets if it is the destination else drop the packets[24].

**VII. VANET APPLICATIONS**

Communication between the vehicles has led to the development of a number of applications and provides a wide range of information to drivers and travelers. This has increased the road safety and comfort of the passengers. Applications can be classified into two, on the basis of their purpose.

**A. Comfort Application**

It is also called Entertaining application. These are non-safety applications, aiming at improving the comfort level of drivers and travelers.

**B. Safety Application**

These applications focus on improving road safety and in avoiding accidents by using the wireless communication between the vehicles or between vehicles and infrastructure.

1) Vulnerable Individual Protection
2) It includes services like audio message for blind person.
3) On Coming Traffic Warning It helps the driver about overtaking maneuvers, by provide information about in-coming traffic.
4) Traffic Signal Violation RSU broadcast messages to warn vehicles about violation in traffic signal.
5) Public Safety Public safety applications are required if an accident has been physically reported. It alerts the vehicles so that they can give a way to the emergency vehicle.

![Figure 12. VANET Application](image)
1) Electronic Brake Warning
2) It informs the driver that sudden braking is performed by a preceding vehicle.
3) Post Crash Notification
4) Vehicle involved in accident alerts other approaching vehicles by broadcasting warning messages.
5) Intersection Violation Warning

This Intersection violation warning application warns drivers when they are going to pass over a red light.

### VII. VANET LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer et al. [26]</td>
<td>2008</td>
<td>Described bidirectionally coupled simulation framework using the road traffic simulator SUMO and network simulator OMNET++.</td>
</tr>
<tr>
<td>J. Zhao et al; [26]</td>
<td>2008</td>
<td>Described a Vehicle-Assisted Data Delivery (VADD) protocol for sparsely connected VANETs. It adopts the idea of “carry-and-forward” in which nodes “carry” packets when there are no routes to the destination under sparse conditions.</td>
</tr>
<tr>
<td>Chen, Jiang et al; [28]</td>
<td>2009</td>
<td>Simulate, using ns-2, the effect of IEEE 1609.4 multichannel operations. They show that with channel switching enabled, the performance for safety related communications becomes “unacceptably poor” and recommend an update/revision to the standard.</td>
</tr>
<tr>
<td>Y.H. Choi [29]</td>
<td>2009</td>
<td>Proposed an Adaptive Location Division Multiple Access (A-LDMA) scheme to handle safety messages that are sent in one-hop broadcast mode (beacon) along with event-triggered multi-hop relayed (flood) messages.</td>
</tr>
<tr>
<td>Pradweap et al; [31]</td>
<td>2013</td>
<td>Proposed a novel Road Side Unit (RSU)-aided design which uses one word Certificate Less Sign Cryption (CLSC), without pairing, to provide anonymous authentication. It works efficiently even in the absence of RSU.</td>
</tr>
<tr>
<td>Divya Gupta et al; [33]</td>
<td>2014</td>
<td>Proposed a new private and reliable geo casting protocol which uses adaptive traffic restriction and dynamic probabilistic forwarding for reliability.</td>
</tr>
</tbody>
</table>

### CONCLUSION AND FUTURE SCOPE

VANET is a promising technology and with the substantial advancement in wireless technology, vehicles are becoming a vital part of global network. VANET will not only provide life saving applications but will also become a powerful communication tool for users. Here, focus is paid on basic architecture of VANET, routing, simulation, attack and application.

Fulfilling the requirements and facing challenges will result in an efficient communication tool which can also provide life saving tools to the users [6]. If improved it can give better results than other mobile ad hoc network. Vehicles can be designed in a way that they possess learning abilities so as to have perception of potential dangers and to modify vehicle’s behaviour consequently. It can help vehicle to take decisions from it’s past experience.
REFERENCES


