
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.46110 509

Review on Cache-Coherent Algorithms with

Multithreaded Computer Architectures

T.Karthik
1
, M.Krishna Sudha

2

M.Phil Research Scholar, Sri Vasavi College, Erode, India
 1

Head, Department of Information Technology, Sri Vasavi College, Erode, India
 2

Abstract: Cache-coherent multithreaded computer architectures has been envisioned as the next generation

architecture of IT Enterprise. In contract to traditional solutions, where the IT services are under proper physical,

logical and personnel controls, Cloud Computing moves the application software and database to the large data centers,

where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses

many new security challenges which have not been well understood. In this article, we focus on cloud data storage

security, which has always been an important aspect of quality services. To ensure the correctness of users’ data in the

cloud, we propose effective and flexible distributed schemes with two salient features, opposing to its predecessors. By

utilizing the homomorphism token with distributed verification of erasure-coded data, our scheme achieves the

integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s).

Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks,

including: data update, delete and append. Extensive security and performance analysis shows that the proposed

scheme is highly efficient and resilient against Byzantine failure, malicious data modification attacks, and even server

cache-coherent attacks.

Keywords: Cache, Multithreading, Homomorphism, Resilient, Simulation.

I. INTRODUCTION

 System availability is crucial for the multi-

threaded (including multiprocessor) systems that run

critical infrastructure. Unless architectural steps are taken,

availability will decrease over time, as implementations

use larger numbers of increasingly unreliable components

in search of higher performance. Both the industry and the

academics predict that transient and permanent faults will

lead to increasing hardware error rates. Backward error

recovery is a cost-effective mechanism to tolerate runtime

hardware errors, but it can only recover from errors that

are detected in a timely fashion. Traditionally, most

systems employ localized error detection mechanisms

such as parity bits on cache lines and memory buses to

detect errors. Although such specialized mechanisms

detect the errors that they target, they do not

comprehensively detect whether the end-to-end behavior

of the system is correct.

 Our goal is end-to-end error detection for

multithreaded memory systems, which would subsume

localized mechanisms and provide comprehensive error

detection. Memory systems are complicated concurrent

systems that include caches, memories, coherence

controllers, interconnection network, and all of the other

glue that enables multiple processor cores or hardware

thread contexts to communicate. As more of the memory

system becomes integrated on chip, including cache and

memory controllers and logic for glueless multi chip

multiprocessing, this logic becomes just as susceptible to

hardware errors as the processor core logic. In this paper,

we focus on the runtime detection of transient and

permanent hardware errors in the memory system.

We do not consider the orthogonal problem of detecting

errors unrelated to the memory system in processor cores,

because good solutions to this problem already exist (for

example, redundant multithreading and diva).our previous

work achieved end-to-end error detection for a very

restricted class of multithreaded memory systems. In that

work, we designed an all-hardware scheme for the

dynamic verification of sequential consistency (dvsc),

which is the most restrictive consistency model. Since the

end-to-end correctness of a multithreaded memory system

is defined by its memory consistency model, dvsc

comprehensively detects errors in systems that implement

sequential consistency (sc). However, dvsc’s applications

are limited, because sc is not frequently implemented.

II. LITERATURE REVIEW

Shared Memory Consistency Models : This paper

presents an overview of the field of memory consistency

model of a system affects the performance,

programmability, and portability. We described memory

consistency models in a way that most computer

professionals would understand. This is important if the

performance-enhancing features being incorporated by

system designers are to be correctly and widely used by

programmers. Our focus is consistency models proposed

for hardware-based shared memory systems. Most of these

models emphasize the system optimizations they support,

and we retain this system-centric emphasis. We also

describe an alternative, programmer-centric view of

relaxed consistency models that describes them in terms of

program behavior, not system optimizations

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.46110 510

Dynamic verification of sequential consistency : In this

paper, we develop the first feasibly implemental scheme

for end-to-end dynamic verification of multithreaded

memory systems. For multithreaded (including

multiprocessor) memory systems, end-to-end correctness

is defined by its memory consistency model. One such

consistency model is sequential consistency (SC), which

specifies that all loads and stores appear to execute in a

total order that respects program order for each thread.

Our design, DVSC-Indirect, performs dynamic

verification of SC (DVSC) by dynamically verifying a set

of sub-invariants that, when taken together, have been

proven equivalent to SC. We evaluate DVSC-Indirect with

full-system simulation and commercial workloads. Our

results for multiprocessor systems with both directory and

snooping cache coherence show that DVSC-Indirect

detects all injected errors that affect system correctness

(i.e., SC). We show that it uses only a small amount more

bandwidth (less than 25%) than an unprotected system and

thus can achieve comparable performance when provided

with only modest additional link bandwidth

Algorithms For Dynamic Software Cache Coherence:

In this paper, we investigate a class of cache coherence

strategies for shared data at the program-level, referred to

as Shared Regions (SR), is used to manage caches

dynamically through software. The practical value of these

strategies is measured by their performance relative to

existing hardware coherence protocols, and the complexity

of the SR programming interface. We present detailed

quantitative results highlighting the performance of a wide

array of SR coherence algorithms, including some novel

algorithms introduced in this paper that use direct cache-

to-cache data transfers via software to improve

performance. These algorithms are studied using

execution-driven simulation and compared to a

representative hardware strategy for a suite of parallel

applications. We study the issue of programming

complexity by analyzing the process of inserting Shared

Regions program annotations into these applications.

Memory Ordering: A Value-Based Approach:

Conventional out-of-order processors employ a multi-

ported, fully-associative load queue to guarantee correct

memory reference order both within a single thread of

execution and across threads in a multiprocessor system.

As improvements in process technology and pipelining

lead to higher clock frequencies, scaling this complex

structure to accommodate a larger number of in-flight

loads becomes difficult if not impossible. Furthermore,

each access to this complex structure consumes excessive

amounts of energy. In this paper, we solve the associative

load queue scalability problem by completely eliminating

the associative load queue. Instead, data dependences and

memory consistency constraints are enforced by simply

reexecuting load instructions in program order prior to

retirement. Using heuristics to filter the set of loads that

must be re-executed, we show that our replay-based

mechanism enables a simple, scalable, and energy-

efficient FIFO load queue design with no associative

lookup functionality, while sacrificing only a negligible

amount of performance and cache bandwidth.

Verification techniques for cache coherence protocols :

In this article we present a comprehensive survey of

various approaches for the verification of cache coherence

protocols based on state enumeration, (symbolic model

checking, and symbolic state models. Since these

techniques search the state space of the protocol

exhaustively, the amount of memory required to

manipulate that state information and the verification time

grow very fast with the number of processors and the

complexity of the protocol mechanisms. To be successful

for systems of arbitrary complexity, a verification

technique must solve this so-called state space explosion

problem. The emphasis of our discussion is on the

underlying theory in each method of handling the state

space exposion problem, and formulating and checking the

safety properties (e.g., data consistency) and the liveness

properties (absence of deadlock and live lock). We

compare the efficiency and discuss the limitations of each

technique in terms of memory and computation time.

Also, we discuss issues of generality, applicability,

automaticity, and amenity for existing tools in each class

of methods. No method is truly superior because each

method has its own strengths and weaknesses. Finally,

refinements that can further reduce the verification time

and/or the memory requirement are also discussed.

Improving the throughput of synchronization by

insertion of delays : Efficiency of synchronization

mechanisms can limit the parallel performance of many

shared-memory applications. In addition, the ever

increasing performance gap between processor and

interprocessor communication may further compromise

the scalability of these primitives. Ideally, synchronization

primitives should provide high performance under both

high and low contention without requiring substantial

programmer effort and software support. QOLR has been

shown to offer substantial speedups and to outperform

other synchronization primitives consistently, but at the

cost of software support and protocol complexity. This

paper proposes the use of speculation and delays to

implement a purely hardware-based queueing mechanism

called Implicit QOLB. Making use of the pervasiveness of

the Load-Linked/Store-Conditional primitives, we present

a series of hardware mechanisms to optimize performance

for sharing patterns exhibited by locks and associated data.

The mechanisms do not require any change to existing

software or instruction sets. IQOLB sits alongside the

cache-coherence protocol and guides the decisions the

protocol makes with respect to lock (and associated data)

transfers. Preliminary evaluations indicate that IQOLB

may perform as well as, if not better than, QOLB without

the additional software and protocol complexity.

Automatic Verification of Cache Coherence: State-

based, formal methods have been successfully applied to

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.46110 511

the automatic verification of cache coherence in

sequentially consistent systems. However, coherence in

shared memory multiprocessors under a relaxed memory

model is much more complex to verify automatically.

With relaxed memory models, incoming invalidations and

outgoing updates can be delayed in each cache while

processors are allowed to race ahead. This buffering of

memory accesses considerably increases the amount of

state in each cache and the complexity of protocol

interactions. Moreover, because caches can hold

inconsistent copies of the same data for long periods of

time, coherence cannot be verified by simply checking that

cached copies are identical at all times. This paper makes

two major contributions. First, we demonstrate how to

model and verify cache coherence under a relaxed

memory model in the context of state-based verification

methods. Frameworks for modeling the hardware and for

generating correct memory access sequences driving the

hardware model are developed. We also show correctness

properties which must be verified on the hardware model.

Second, we demonstrate a successful application of a

state-based verification tool called SSM for the

verification of the delayed protocol, an aggressive protocol

for relaxed memory models. SSM is based on an

abstraction technique preserving the properties to verify.

We show that with classical, explicit approaches the

verification of cache coherence is realistically unfeasible

because of the state space explosion problem, whereas

SSM is able to verify protocols both at both behavioral

and message-passing levels.

III. PROPOSED SYSTEM

Security threats faced by cache-coherent data

storage can come from two different sources. On the one

hand, a CSP can be self-interested, untrusted and possibly

malicious. Not only does it desire to move data that has

not been or is rarely accessed to a lower tier of storage

than agreed for monetary reasons, but it may also attempt

to hide a data loss incident due to management errors,

Byzantine failures and so on. On the other hand, there may

also exist an economically motivated adversary, who has

the capability to compromise a number of cache-coherent

data storage servers in different time intervals and

subsequently is able to modify or delete users’ data while

remaining undetected by CSP for a certain period..

Specifically, we consider two types of adversary with

different levels of capability in this system. Weak

adversary is interested in corrupting the user’s data files

stored on individual servers. Once a server is comprised,

An adversary can pollute the original data files by

modifying or introducing its own fraudulent data files by

modifying or introducing its own fraudulent data to

prevent the original data from being retrieved by the

user.Strong Adversaary is the worst case scenario, in

which we assume that the adversary can compromise all

the storage servers so that he can intentionally modify the

data files as long as they are internally consistent.In fact,

this is equivalent to the case where all servers are

colluding together to hide a data loss or corruption

incident.

IV. ALGORITHM REVIEW

In computing, cache algorithms (also frequently

called replacement algorithms or replacement policies)

are optimizinginstructions – or algorithms – that

a computer program or a hardware-maintained structure

can follow, in order to manage a cache of information

stored on the computer. When the cache is full, the

algorithm must choose which items to discard to make

room for the new ones.

The average memory reference time is

where

 = average memory reference time

 = miss ratio = 1 - (hit ratio)

 = time to make a main memory access when there is

a miss (or, with multi-level cache, average memory

reference time for the next-lower cache)

= the latency: the time to reference the cache when

there is a hit

 = various secondary effects, such as queuing effects in

multiprocessor systems

There are two primary figures of merit of a cache: The

latency, and the hit rate. There are also a number of

secondary factors affecting cache performance.The "hit

ratio" of a cache describes how often a searched-for item

is actually found in the cache. More efficient replacement

policies keep track of more usage information in order to

improve the hit rate (for a given cache size).The "latency"

of a cache describes how long after requesting a desired

item the cache can return that item (when there is a hit).

Faster replacement strategies typically keep track of less

usage information—or, in the case of direct-mapped cache,

no information—to reduce the amount of time required to

update that information. Each replacement strategy is a

compromise between hit rate and latency. Measurements

of "the hit ratio" are typically performed

on benchmark applications. The actual hit ratio varies

widely from one application to another. In particular, video

and audio streaming applications often have a hit ratio

close to zero, because each bit of data in the stream is read

once for the first time (a compulsory miss), used, and then

never read or written again. Even worse, many cache

algorithms (in particular, LRU) allow this streaming data

to fill the cache, pushing out of the cache information that

will be used again soon (cache pollution).

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.46110 512

Least Recently Used (LRU) : Discards the least recently

used items first. This algorithm requires keeping track of

what was used when, which is expensive if one wants to

make sure the algorithm always discards the least recently

used item. General implementations of this technique

require keeping "age bits" for cache-lines and track the

"Least Recently Used" cache-line based on age-bits. In

such an implementation, every time a cache-line is used,

the age of all other cache-lines changes. LRU is actually a

family of caching algorithms.

 public void CleanUp(DateTime now)

{

 if(_current != _oldest)

 lock(this)

 {

 //calculate how many items should be removed

 DateTime maxAge = now.Subtract(_maxAge);

 DateTime minAge = now.Subtract(_minAge);

 int itemsToRemove = _owner._curCount -

_owner._capacity;

 AgeBag bag = _bags[_oldest % _size];

 while(_current != _oldest && (_current-

_oldest>_size - 5

 || bag.startTime < maxAge || (itemsToRemove

> 0

 && bag.stopTime > minAge)))

 {

 // cache is still too big / old so remove oldest bag

 Node node = bag.first;

 bag.first = null;

 while(node != null)

 {

 Node next = node.next;

 node.next = null;

 if(node.Value != null && node.ageBag !=

null)

 if(node.ageBag == bag)

 {

 // item has not been touched since bag

was

 // closed, so remove it from LifespanMgr

 ++itemsToRemove;

 node.ageBag = null;

 Interlocked.Decrement(ref

_owner._curCount);

 }

 else

 {

 // item has been touched and should

 // be moved to correct age bag now

 node.next = node.ageBag.first;

 node.ageBag.first = node;

 }

 node = next;

 }

 // increment oldest bag

 bag = _bags[(++_oldest) % _size];

 }

 OpenCurrentBag(now, ++_current);

 CheckIndexValid();

 }

}

Pseudo-LRU (PLRU): For CPU caches with

large associativity (generally >4 ways), the

implementation cost of LRU becomes prohibitive. In

many CPU caches, a scheme that almost always discards

one of the least recently used items is sufficient. So many

CPU designers choose a PLRU algorithm which only

needs one bit per cache item to work. PLRU typically has

a slightly worse miss ratio, has a slightly better latency,

and uses slightly less power than LRUWhich memory

locations can be cached by which cache locations

Fig 1: cache Coherent simulations method

Random Replacement (RR) : Randomly selects a

candidate item and discards it to make space when

necessary. This algorithm does not require keeping any

information about the access history. For its simplicity, it

has been used in ARM processors.It admits efficient

stochastic simulation.

V. CONCLUSION

This paper presents a framework that can

dynamically verify a wide range of consistency models

and comprehensively detect memory system errors. Our

verification framework is modular, because it checks three

independent invariants that together are sufficient to

guarantee memory consistency. The modular design makes

it possible to replace any of our checking mechanisms

with a different scheme to adapt to a specific system’s

design. For example, the coherence checker adapted from

DVSC can be replaced by the design proposed DVMC is

also not limited to the conventional multiprocessor

systems described in this paper but could be used with

other shared memory based architectures. The simplicity

of the proposed mechanisms suggests that they can be

implemented with small modifications to existing multi-

threaded systems. Simulation of a DVMC implementation

shows some decrease in performance, but we expect the

negative impact to be outweighed by the benefit of

improved safety and availability.

 REFERENCES
[1] S.V. Adve and K. Gharachorloo, ―Shared Memory Consistency

Models: A Tutorial,‖
Computer, vol. 29, no. 12, pp. 66-76, Dec. 1996.

http://en.wikipedia.org/wiki/File:Cache,associative-fill-both.png

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.46110 513

[2] A.R. Alameldeen, M.M. Martin, C.J. Mauer, K.E. Moore, M. Xu,

M.D. Hill, D.A. Wood, and D.J. Sorin, ―Simulating a $2M
Commercial Server on a $2K PC,‖ Computer, vol. 36, no. 2, pp. 50-

57, Feb. 2003.

[3] T.M. Austin, ―DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,‖ Proc. 32nd Ann. IEEE/ACM Int’l

Symp.Microarchitecture (MICRO ’99), pp. 196-207, Nov. 1999

[4] P. Barford and M. Crovella, ―Generating Representative Web
Workloads for Network and Server Performance Evaluation,‖Proc.

ACM Sigmetrics ’98, pp. 151-160, June 1998.

 [5] H.W. Cain and M.H. Lipasti, ―Verifying Sequential Consistency
Using Vector Clocks,‖ Proc. 14th ACM Symp. Parallel Algorithms

and Architectures (SPAA ’02), Aug. 2002.

[6] H.W. Cain and M.H. Lipasti, ―Memory Ordering: A Value-Based
pproach,‖ Proc. 31st Ann. Int’l Symp. Computer Architecture(ISCA

’04), June 2004.

[7] J.F. Cantin, M.H. Lipasti, and J.E. Smith, ―Dynamic Verification of
Cache Coherence Protocols,‖ Proc. Second Workshop Memory

Performance Issues (WPI ’01), June 2001.

[8] S. Chatterjee, C. Weaver, and T. Austin, ―Efficient Checker Processor
Design,‖ Proc. 33rd Ann. IEEE/ACM Int’l Symp. Microarchitecture

(MICRO ’00), pp. 87-97, Dec. 2000.
[9] K. Gharachorloo, A. Gupta, and J. Hennessy, ―Two Techniques to

Enhance the Performance of Memory Consistency Models,‖ Proc.

Int’l Conf. Parallel Processing (ICPP ’91), vol. I, pp. 355-364, Aug.
1991.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and

J. Hennessy, ―Memory Consistency and Event Ordering in Scalable
Shared-Memory,‖ Proc. 17th Ann. Int’l Symp. Computer

Architecture (ISCA ’90), pp. 15-26, May 1990.

BIOGRAPHIES

T.Karthik obtained his M.Sc software engineering. He

is currently doing his M.Phil Research Programme

from Sri Vasavi College, erode. His research interest

include data mining, Text mining and soft computing

M.Krishna sudha is Head, Department of Information

Technology, Sri Vasavi College, Erode, Tamilnadu,

India with more than 10 years of teaching

eperience.She Obtained her MCA Degree from

Government Arts college, Coimbatore, Tamilnadu,

India. She completed her Mphil Research Programme

From Bharathiayar university, Coimbatore and

persuing her PhD Program . She published more than

10 papers in reputed international journals and

produced more than 15 mphil scholars. Her research

Interest Include Networking, Cloud Computing, Soft

Computing and web services

	Dynamic verification of sequential consistency : In this paper, we develop the first feasibly implemental scheme for end-to-end dynamic verification of multithreaded memory systems. For multithreaded (including multiprocessor) memory systems, end-to-e...
	Algorithms For Dynamic Software Cache Coherence: In this paper, we investigate a class of cache coherence strategies for shared data at the program-level, referred to as Shared Regions (SR), is used to manage caches dynamically through software. The p...

	Memory Ordering: A Value-Based Approach: Conventional out-of-order processors employ a multi-ported, fully-associative load queue to guarantee correct memory reference order both within a single thread of execution and across threads in a multiprocess...
	Verification techniques for cache coherence protocols : In this article we present a comprehensive survey of various approaches for the verification of cache coherence protocols based on state enumeration, (symbolic model checking, and symbolic state ...
	Improving the throughput of synchronization by insertion of delays : Efficiency of synchronization mechanisms can limit the parallel performance of many shared-memory applications. In addition, the ever increasing performance gap between processor and...
	Automatic Verification of Cache Coherence: State-based, formal methods have been successfully applied to the automatic verification of cache coherence in sequentially consistent systems. However, coherence in shared memory multiprocessors under a rela...
	III. PROPOSED SYSTEM

